ABSTRACT

PROCTOR, WILLIAM CYRUS. Elements of High-Order Predictive Model Calibration Algorithms
with Applications to Large-Scale Reactor Physics Systems. (Under the direction of Dan Cacuci
and Yousry Azmy.)

The inevitable discrepancies between experimental and computational results provide the
basic motivation for performing quantitative model verification, validation, and predictive es-
timation. Loosely speaking, “code verification” addresses the question “are you solving the
mathematical model correctly?”, while model validation addresses the question “does the model
represent reality?” Ultimately, one aims at obtaining a probabilistic description of possible fu-
ture outcomes based on all recognized errors and uncertainties, from all steps in the sequence
of modeling and simulation processes that leads to a prediction using a computational model.
Achieving this goal requires the combination (“assimilation”) of computational and experi-
mental results in order to adjust (“calibrate”) the model parameters for predicting results
(“responses”) more accurately — the so-called “best-estimate” results, with smaller uncertain-
ties. The mathematical frameworks for combining experimental and computational quantities
are customarily called “data adjustment” (for time-independent reactor physics applications)
or “data assimilation” (for time-dependent geophysical applications). Notably, the current
state-of-the-art procedures for data adjustment and/or assimilation are restricted to the use of
second-order uncertainties (i.e., covariance matrices), and do not have provisions for incorporat-
ing response derivatives higher than first-order (in data adjustment procedures) or second-order
(in some limited-scope research-versions of data assimilation procedures). Furthermore, neither
the data adjustment nor the data assimilation procedures are currently able of computing
higher-order moments (e.g., skewness and kurtosis) of the response distribution. In the absence
of these higher-order moments of the response distribution, the predicted response distribution
must implicitly be assumed as being Gaussian, since it is not possible to quantify the departures,
if any, of the predicted responses from the assumed Gaussian distribution.

An important aspect of the novel contributions presented in this dissertation is the de-
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velopment of highly parallel and scalable algorithms for application of data adjustment and
assimilation to large (peta)-scale systems, thereby significantly extending the practical feasi-
bility and applicability of predictive model calibration activities. These new algorithms also
include mathematical verification procedures for identifying non-physical covariance matrices,
as well as quantifying the consistency of computational and experimental information. Further-
more, the dissertation presents expressions for computing the skewness and kurtosis of response
distributions, to be used for quantifying non-Gaussian features of computed response distribu-
tions. A novel method, using adjoint functions, for computing very efficiently second-order
mixed derivatives of responses to parameters, is also presented in this work.

The significant impact of the above algorithmic advances is demonstrated by using the neu-
tron transport code Denovo, a highly parallel (one the order of tens of thousands of processors)
code that runs on ORNL’s leadership-class computer Jaguar, in conjunction with experimental
results from the Lady Godiva and Jezebel benchmarks, as well as the “LEU-COMP-THERM-
008” (shorthand: LCT) assembly. We recall here that the Lady Godiva benchmark is a bare
sphere containing 94 wt% 235U | Jezebel is a critical assembly containing 2*°Pu , and the LCT
assembly models a 3 x 3 array of Pressurized Water Reactor fuel assemblies comprising 4808
fuel rods and 153 water holes. Noteworthy new results in this dissertation are also obtained by
using the remarkable efficiency of the “adjoint sensitivity analysis procedure for operator-type
responses”, originally developed by Cacuci in 1981, to compute the sensitivities (derivatives) of
the spatially dependent (as opposed to point-values of ) neutron fluxes to cross sections.

The results obtained in this work represent first-of-a-kind computations of response skewness
and kurtosis, thus enabling a quantitative assessment of non-Gaussian features of predicted
responses (results). In particular, the illustrative results presented for the Godiva, Jezebel,
and LCT benchmarks show that the response skewness and kurtosis are relatively small, thus
quantitatively confirming the intuitive feeling (based on the presumed applicability of the central
limit theorem) that simple reactor physics problems involving small cross section uncertainties

tend to produce reaction rate responses that are nearly normally distributed. Finally, yet
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importantly, the algorithmic advances and results presented in this dissertation represent a
fundamental first step towards developing a high-order predictive model calibration procedure
capable of Bayesian combination of non-Gaussian model parameter features with non-Gaussian
experimental distributions. Such developments are currently underway, and their successful
completion is expected to enable more accurate predictions of “best-estimate results” including

corresponding predicted non-Gaussian features, for large (peta- and exa-) scale systems.
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Chapter 1

Introduction

Repeated measurements of the same physical quantity yield values that differ from each other,
as well as from the true but unknown value of that quantity. Such variations in results stem
from a variety of causes, including experimental errors, imperfect instruments, and imperfectly
known calibration standards. Hence, around any reported experimental value, there always
exists a range of values that may also be plausibly representative of the true value. Thus, since
the true value of physical quantities cannot be measured exactly, nominally measured values
are insufficient by themselves for applications; the quantitative uncertainties accompanying the
measurements are also needed, along with the respective nominal values.

Models of complex physical systems usually involve two distinct sources of uncertainties,
namely: (i) stochastic uncertainty, which arises because the system under investigation can
behave in many different ways, and (ii) subjective or epistemic uncertainty, which arises from
the inability to specify an exact value for a parameter that is assumed to have a constant
value in the respective investigation. Epistemic (or subjective) uncertainties characterize a
degree of belief regarding the location of the appropriate value of each parameter. In turn,
these subjective uncertainties lead to subjective uncertainties for the response, thus reflecting
a corresponding degree of belief regarding the location of the appropriate response values as

the outcome of analyzing the model under consideration. A typical example of a complex
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system that involves both stochastic and epistemic uncertainties is a nuclear reactor power
plant: in a typical risk analysis of a nuclear power plant, stochastic uncertainty arises due to
the hypothetical accident scenarios which are considered in the respective risk analysis, while
epistemic uncertainties arise because of uncertain parameters that underlie the estimation of
the probabilities and consequences of the respective hypothetical accident scenarios.

Quantifying uncertainties in experimental and/or computational results is the goal of un-
certainty analysis. Achieving this goal requires a weighted propagation of the uncertainties
afflicting the parameters that influence the result (or response) of interest. This influence is
quantitatively measured by the so called sensitivities of the results (or response) to the respec-
tive parameters. The procedures for quantifying response sensitivities to parameters fall within
the scope of sensitivity analysis. Sensitivity and uncertainty analysis procedures can be either
local or global in scope. The objective of local analysis is to analyze the behavior of the system
response locally around a chosen point (for static systems) or chosen trajectory (for dynamical
systems) in the combined phase space of parameters and state variables. On the other hand,
the objective of global analysis is to determine all of the system’s critical points (bifurcations,
turning points, response maxima, minima, and/or saddle points) in the combined phase space
formed by the parameters and dependent (state) variables, and subsequently analyze these
critical points by local sensitivity and uncertainty analysis. The methods for sensitivity and
uncertainty analysis are based on either statistical or deterministic procedures. In principle,
both types of procedures can be used for either local or for global sensitivity and uncertainty
analysis, although, in practice, deterministic methods are used mostly for local analysis while
statistical methods are used for both local and global analysis.

Sensitivity and uncertainty analysis are becoming increasingly widespread in many fields of
engineering and sciences, as diverse as nuclear and chemical engineering, econometric modeling,
electrical engineering, atmospheric and geophysical sciences, encompassing practically all of the
experimental data processing activities as well as many computational modeling and process

simulation activities. There are many methods, based either on deterministic or statistical
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concepts, for performing sensitivity and uncertainty analysis. However, despite this variety of
methods, or perhaps because of it, a precise, unified terminology, across all methods, does not
seem to exist yet, even though many of the same words are used by the practitioners of the
various methods. For example, even the word sensitivity as used by analysts employing statis-
tical methods may not necessarily mean or refer to the same quantity as would be described by
the same word, sensitivity, when used by analysts employing deterministic methods. Care must
be therefore exercised, since identical words may not necessarily describe identical quantities,
particularly when comparing deterministic to statistical methods. Furthermore, conflicting and
contradictory claims are often made about the relative strengths and weaknesses of the various
methods.

Extracting “best-estimate” values together with “best-estimate” uncertainties from often
sparse, incomplete, error-afflicted, and occasionally discrepant experimental data requires a
wide range of probability-theory concepts and tools, from deductive statistics involving mainly
frequencies and sample tallies to inductive inference for assimilating non-frequency data and
a priori knowledge. In general, the uncertainties in computational results arise from several
distinct causes, the most usual being: (i) the adequacy or inadequacy of the mathematical
equations to model the actual phenomenon may give rise modeling uncertainties; (ii) the nu-
merical methods used to solve the model’s equation also give rise to uncertainties and (iii) the
data and parameters in a model give rise to parameter uncertainties.

The discrepancies between experimental and computational results provide the basic mo-
tivation for performing quantitative model verification, validation, qualification and predictive
estimation. Loosely speaking, “code verification” means “are you solving the mathematical
model correctly?” Code verification involves activities that are related to software quality as-
surance (SQA) practices and to activities directed toward finding and removing deficiencies in
numerical algorithms used to solve partial differential equations (PDEs). SQA procedures are
needed during software development and modification, as well as during production computing.

SQA procedures are well developed in general, but areas of improvement are needed with regard

www.manaraa.com



to software operating on massively parallel computer systems. Numerical algorithm verifica-
tion addresses the software reliability of the implementation of all the numerical algorithms
that affect the numerical accuracy of solutions produced by the code. Numerical algorithm
verification is conducted by comparing computational solutions with benchmark solutions: an-
alytical solutions, manufactured solutions, and highly accurate numerical solutions. Solution
verification, also called numerical error estimation, deals with the quantitative estimation of
the numerical accuracy obtained when PDEs are solved using discretization methods. The
primary goal in solution verification is the estimation of the numerical accuracy of all of the
solution quantities of interest in a given simulation. Solution verification is related to the topic
of adaptive mesh refinement (AMR), although the goals of AMR are more restrictive than those
of solution verification. The discretization errors must be quantified in order to separate them,
in principle, from other error and uncertainty sources, such as physics modeling errors and
variability in physical properties. Two major shortcomings affect current verification methods,
namely: (i) estimating discretization errors using solutions on multiple mesh resolutions is a
computationally expensive process, and (ii) current methods for complex physics simulations
are not robust.

Loosely speaking, model validation means “does the model represent reality?” Model val-
idation emphasizes the quantitative assessment of computational model accuracy by compari-
son with high-quality validation experiments; that is, experiments that are well characterized
in terms of measurement and documentation of all the input quantities needed for the com-
putational model, as well as carefully estimated and documented experimental measurement
uncertainty. These validation experiments can be conducted on hardware that represents any
level of simplification or disassembly of the actual, or complete, system of interest (for example,
even experiments conducted on simple geometries with only one element of physics occurring).
The state-of-the-art in model validation addresses issues of (a) assessing model accuracy when
several system response quantities have been measured and compared; and (b) comparing sys-

tem response quantities from multiple realizations of the experiment with computational results
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that are characterized by probability distributions.

Predictive estimation (PE) aims at providing a probabilistic description of possible future
outcomes based on all recognized errors and uncertainties, from all steps in the sequence of mod-
eling and simulation processes that leads to a prediction using a computational model. Typical
uncertainties include: (a) data error or uncertainty (input data such as cross sections, model
parameters such as reaction-rate coefficients, initial conditions, boundary conditions, and forc-
ing functions such as external loading), (b) numerical discretization error, and (c) uncertainty
(e.g., lack of knowledge) in physics processes being modeled. The result of the PE analysis is a
probabilistic description of possible future outcomes based on all recognized errors and uncer-
tainties. Predictive estimation for computer experiments has three key elements; namely model
calibration, model extrapolation, and estimation of the validation domain. Model calibration
addresses the integration of experimental data for the purpose of updating the data of the com-
puter model. Important components include the estimation of discrepancies in the data, and
more important, estimation of the biases between model predictions and experimental data.
The mathematical framework for model calibration is provided by the data adjustment and
data assimilation procedures, which encompass the propagation of all relevant uncertainties,
including: (i) data uncertainties (in input data, model parameters, initial and boundary condi-
tions, forcing functions, etc.); (ii) numerical discretization errors; (iii) discrepancies within the
experimental data and/or discrepancies between data and model predictions; (iv) uncertainties
in the physics of the modeled processes (e.g., due to incomplete knowledge). The state-of-the-
art of calibration of models is fairly well developed, but current methods are still hampered in
practice by the significant computational effort required; alternative methods for reducing the
computational effort are of great interest, and methods based on adjoint models show great
promise in his regard.

Model extrapolation addresses the prediction uncertainty in new environments or conditions
of interest, including both untested parts of the parameter space and higher levels of system

complexity in the validation hierarchy. Extrapolation of models and the resulting increase of
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uncertainty are poorly understood, particularly the estimation of uncertainty that results from
nonlinear coupling of two or more physical phenomena that were not coupled in the existing
validation database.

Perhaps the earliest systematic activities on data assimilation were initiated in Europe
by Cecchini et al. [I2] , in Israel by Humi et al. [23], and in the former Soviet Union by
Usachhev [36], in the course of evaluating neutron cross sections by using time-independent
reactor physics experiments for measuring “integral quantities” (also called “system responses”)
such as reaction rates and multiplication factors. A decade later, these activities had reached
conceptual maturity under the name of “cross-section adjustment” (see, e.g. Refs. [34] and
[19]), which essentially amounted to using a weighted least-square procedure (with response
sensitivities as weighting functions) for combining uncertainties in the model parameters with
uncertainties in the experimental data, subject to the constraint imposed by the linearized
model. The resulting “adjusted” parameters and their “adjusted” uncertainties were then
employed in the respective core neutronics model to predict better results (reaction rates,
multiplication factors, Doppler coefficients) in an extended application domain (e.g., a new or
improved reactor core design). By the late-1970s, the first-order response sensitivities, which
appeared as weighting functions in the least squares adjustment procedure, were efficiently
computed using adjoint neutron fluxes, as typified by the works of Kuroi and Mitani [26], Dragt
et al [14], and Weisbin et al. [37]. It is important to note that all of these works dealt with
the time-independent linear neutron transport or diffusion equation, as encountered in reactor
physics and shielding, for which the corresponding adjoint equations were already known and
readily available. For nonlinear, time-dependent or stationary problems, the adjoint method
for computing efficiently sensitivities was generally formulated in 1981 by Cacuci [6} [7], while
the first general formulation of a data adjustment methodology for time-dependent nonlinear
problems was presented in 1982 by Barhen et al. [2]. Regrettably, this advanced (for its
time) data adjustment methodology stagnated in the field of nuclear engineering since 1982

and apparently failed to influence other scientific fields.
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In the late 1980s and during the 1990s, the fundamental concepts underlying “data ad-
justment” seem to have been rediscovered while developing the so-called “data assimilation”
procedure in the geophysical sciences, in that the concepts underlying data assimilation are the
same as those underlying the (much older) “data adjustment” procedure. Since then, well over
a thousand works on data assimilation have been published in the geophysical sciences alone,
obviously too numerous to cite extensively here; representative works can be found cited in the
books by Lewis et al. [29], Lahoz et al. [27], and Cacuci et al. [I1].

Cacuci and Ionescu-Bujor [10] have recently published a comprehensive mathematical method-
ology for best-estimate predictions following the assimilation of experimental data and simulta-
neous calibration of model parameters and responses, for large-scale nonlinear time-dependent
systems. This methodology generalizes and significantly extends the results customarily used
in nuclear engineering as well as those underlying the so-called 4D- VAR data assimilation
procedures in the geophysical sciences [29] 27, [11].

This methodology also provides a quantitative indicator constructed from sensitivity and
covariance matrices for determining the consistency (agreement or disagreement) among the a
priori computational and experimental data (parameters and responses). Once the inconsistent
data, if any, is discarded, the methodology by Cacuci and Ionescu-Bujor [10] yields best-estimate
values for parameters and predicted responses, as well as best-estimate reduced uncertainties
(i.e., “smaller” values for the variance-covariance matrices) for the predicted best-estimate
parameters and responses.

The dissertation is structured into five main chapters, including two appendices. Chapter
presents the mathematical framework for data assimilation and simultaneous calibration of
model parameters and responses, for a time-independent physical system. All theory in this
chapter is based on the NS&E article by Cacuci and Ionescu-Bujor [10] which is generalized for
a time-dependent physical system. The data assimilation and best-estimate model calibration
methodology presented in Chapter [2] also includes quantitative indicator (based on uncertain-

ties and sensitivities) for determining the degree of agreement (or disagreement) relevant to the
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assimilation and best-estimate adjustment of parameters and responses, of computations and ex-
periments.Following the mathematical framework, the main features of a systematic procedure
for verifying the consistency for any general covariance matrix are outlined. A matrix must be
symmetric positive definite to truly be considered a physically meaningful variance-covariance
matrix. It is a corollary of the Cauchy-Schwarz inequality that the correlation between any
two quantities cannot exceed 1 in absolute value. Lastly, a specific evaluation is carried out
and reported for the model parameter covariance matrices, which utilize ORNL’s SCALE cross
section information, that are relevant to the work presented in later chapters.

Chapter [3| begins with the introduction of several of the computational tools used through-
out this work. Attention is given to the leadership-class code Denovo [16] and the recently
implemented sensitivity analysis module by R. T. Evans [I5] from which this work is possi-
ble. Two other tools, developed in-house, specifically for the demonstration of the mathemat-
ical frameworks presented in Chapters [2] and 4] are described for use with massively parallel
computer architectures including ORNL’s Jaguar. Applications of best-estimate model cali-
bration, including the exercise of the previously described quantitative indicator are demon-
strated with three different benchmark systems from the International Handbook of Evaluated
Criticality Safety Benchmark Experiments [4]; namely the Lady Godiva, Jezebel and LEU-
THERM-COMP-008 benchmarks. Each system is thoroughly detailed before individual model
calibration results are presented along with representative first-order sensitivity information.
Furthermore, the Lady Godiva benchmark was used as demonstration for the efficient com-
putation of spatially-dependent sensitivities via the “adjoint sensitivity analysis procedure for
operator-type responses” as discussed in [§].

Chapter {4} entitled “Higher-Order Moments for Quantifying non-Gaussian Response Fea-
tures”, commences with the derivation of expressions for the response skewness and kurtosis,
taking into account the second-order mixed-derivatives of the response with respect to param-
eters, as well as the first four parameter moments. Skewness is a measure of the asymmetry of

a probability distribution, while the kurtosis measures the “peakedness” of a probability dis-
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tribution when compared with the corresponding Normal distribution. To efficiently compute
the second-order mixed-derivatives, a novel method by Cacuci is presented utilizing adjoint
functions. This method reduces the number of computations from the previous methods (see
[18, 20]) which are on the order of the number of parameters squared, to on the order of the
number of parameters, or less, depending on the nonlinearity of the system. Next, the bench-
mark systems, Godiva and Jezebel are exercised with this new framework. Results for the
higher-order moments confirm the expectation that these models should behave nearly linear
with respect to the chosen responses.

Lastly, Chapter [f offers concluding remarks, addressing further work needed to alleviate the

current limitations of the best-estimate predictive methodology presented in this work.

www.manharaa.com




Chapter 2

A Priori Covariance Verification
Steps for First-Order Predictive
Model Calibration

2.1 Background

All theory in this chapter is based on the Nuclear Science and Engineering article by Cacuci
and Ionescu-Bujor [10].
A physical system where indirect experimental measurements may be taken can be modeled

in terms of

e a system of linear and/or nonlinear equations that relate the system’s independent and

dependent variables
e (in)equality constraints that bound the range of the system’s parameters
e usually several output responses of interest computed by the model

e experimentally measured responses (mean and covariances)

10
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In general, this mathematical framework can and has been written for time-dependent
systems. In this work, only time-independent systems have been considered such that the
following notation will be simplified to reflect this.

The time-independent physical system to be analyzed in this chapter comprises of N, model
parameters and IV, distinct responses. Hence, the column vector a of system parameters and

the vector " of experimentally measured responses may be shown in component form as

a = (al,ag,...,ai,...aNa)T

9

ro= (r, T TRy TN (2.1)

The system parameters are considered variates with mean values a’. The covariance be-

tween two parameters «; and a; are written as

(Ca)ij =F ([ai - ag] [aj - ag]) , (2.2)

where F(-) denotes the expectation value. These covariances constitute elements of the sym-

metric covariance matrix of the form
C,.=F ([a — ao] [o — aO]T) =Cl. (2.3)

In a similar fashion, the measured responses are characterized by mean values ™ and by the

symmetric covariance matrix
Cn=F (['r [ — rm]T) —cT. (2.4)

Generally speaking, the measured responses may be correlated to the input parameters by the

(often rectangular) response-parameter uncertainty matrix

Cor=F ([a —a’] [r— 'rm]T) . (2.5)
11
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In general, a response computed using the model can depend nonlinearly and implicitly on
the model parameters. Uncertainties due to parameters induce uncertainties in the responses
which, in this case, can be computed deterministically using propagation of moments method.
The computed response is linearized via a functional Taylor-series expansion around the nominal

parameter values a® as

rl@)=R(a’)+S(a—a) +..., (2.6)

where R(a") represents the vector of computed responses at the nominal parameter values o’

and S denotes N, x N, dimensional matrix containing the first Gateaux derivatives of the

computed responses with respect to the parameters

OR; (ao) OR; (ao)
ooy T dan,
= OR( 0) .
S = UACUN 2.7)
ORm (a?) ORm (a?)
Oa te oan,

The expectation value, E(r), is computed by integrating the expansion of the responses

over the unknown joint probability distribution p(e, r)

E(r):/ r(a)p(a, r)dea, (2.8)

where D, is simply the domain of all « values. Substituting in the first-order Taylor expansion

yields

Nao

E(r) = R(a°) / pla,r)da+ Y ;j

12
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The integrand in the first term integrates to 1 as p(a,r) is a probability distribution. The
integrand in the second term is the first central moment which is identically zero. Thus, the
expectation value is

E(r) = R(a"). (2.9)

Cire (ao)

I
=
/
=
L
|
VN
T =
)
L=
?T
R
e |
==
— <
w =
0N
B
S

E
— [S(a")]Ca[S ()] (2.10)

Applying the maximum entropy algorithm described in [10], to the computational and exper-
imental information described previously indicates the most objective probability distribution

for this information is a multivariate Gaussian of the form

e~ 3Q(2)
p(z|C)dz = -dz, (2.11)
|27 C|2
where
Qz)=2TC1z; —0< zj < 00, (2.12)
a—ao
z= : (2.13)
r—r"
Ca Ca'r
C = . (2.14)
CL, Cnm

If no specific loss function is provided, the recommended best-estimate mean vector zBF

and its respective best-estimate posterior covariance matrix are usually evaluated assuming
quadratic loss. The bulk of the contribution in Eq. is extracted by computing it at the

point where the @ attains a minimum subject to Eq. When higher-order terms as well as

13

www.manharaa.com




numerical errors are neglected this relation can be conveniently written in the form

Z(a%z+d=0, (2.15)
where
d= R(a’) — ™, (2.16)
and Z denotes the partitioned matrix
Z=(S1I), (2.17)

where I is a N, x N, identity matrix. The minimum point of Q(z) subject to Eq. is a
constrained minimization problem that may be solved by introducing Lagrange multipliers A

to construct an augmented functional

P(z,A) =Q(z) +2AT [Z(cxo)z + d] = min,

z=2BF = . (2.18)
Where the functional P(z, A) reaches its minimum may be found through the conditions
V.P(z,A) =0, VAP(2,A\) =0, at z = 257, (2.19)

The solution to the constrained minimization problem is detailed in the Appendix of [10]. The

resulting best-estimate parameters, responses and reduced uncertainties covariance matrices are

detailed below:

14
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The best-estimate predicted nominal values for the calibrated parameters:
aPF = a4 (Car — Ca [S (a")]") C7'a, (2.20)
where the deviation-vector uncertainty matrix is defined as

Cqy = E(dd")

== C’rC (ao) - Cg’r' [S (ao)]T - [S (aO)]T Ca'r + C’rn, (221)
The best-estimate predicted nominal values for the calibrated responses:
BE m T 1T -1
r(a”") =r —i—(Cm—Ca,,[S(a )] >Cd d. (2.22)

The best-estimate predicted covariances CB¥ and CBF | corresponding to the best-estimate

parameters a®F and responses r(a?¥), together with the predicted best-estimate parameter-

response covariance matrix CSE:

cBt = E ([a — aBE] [a — aBE]T>

= Ca— [Caa ()] [Ca ()] [Caa (@”)]”, (2.23)
ctr = E([r—r(@®®)][r-r(a"")]")

— Com—[Cra ()] [Ca ()] " [Cra ()], (2.24)
ctt = g ([a — aBE] [r —r (aBE)]T

= Cor — [Caa (a°)] [Ca ()] " [Cra (a)]", (2.25)

15
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where

Coa = FE ([a — aBE] dT)

= Car—Co[S(a%)], (2.26)
and

Crqg = E([r—r"d")

= Cpn—CL.[S(a")]". (2.27)

Note that Eq. expresses the best-estimate response covariance matrix C,{BE in terms
of the initial covariance matrix C,y, of the experimental responses. Alternatively, C2F may be
derived directly from the model (the extra subscript “c” to distinguish the two). Starting from

Eq. but generating the expansion about a®F instead of a yields
r(a) = R (a??) + S (a®F) (a - aPF) +.... (2.28)
From Eq. it follows that

cil = E([r-R(a")][r- R(a®)]")
=[5 (@®®)] ([a -] [a - a®]") [s (@?F)]"

= [S(aBF)] CBE[S (aBF)]" . (2.29)

Comparing Eq. and Eq. shows that in general cases C2F # CBF since S (aBE ) #*

S (ao). In the case when the model is “perfect” (free of numerical errors) and exactly linear,

16
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then the sensitivities are independent of parameter values

S (aPF) =8 (a") =8,

for perfect and linear models. (2.30)

And as such, CBF = CP¥| for perfect linear models. This concept of inequality between
sensitivities evaluated at different state points (in this case: a® and a¥) for nonlinear models
will be exploited in Chapter [4] for computation of higher-order moments.

Perhaps, most importantly, is the ability to measure the mutual and joint consistency of

the information available for model calibration. The quantity

-1

Qmin = Q (2PF) =d" [Cq ()] d, (2.31)
measures the deviations between the experimental and nominally computed responses. From
[T0], Qmin obeys a x? distribution with n degrees of freedom. The x? distribution is a measure
of the deviation of a true distribution from the hypothetical Gaussian. A practical quantitative
criterion for the acceptance or rejection of experimental results in conjunction with a given

theoretical model is to accept the value of x?/N, whenever

B<Pr, () <1-8, (2.32)

where (3, is a user-defined probability € [0, 1] expressing one’s confidence that the experimental
results and the computational results are indeed consistent.

To further elucidate, the deviation-vector uncertainty matrix, Cg, contains all uncertainties
and sensitivities while deviation-vector, d, contains the deviation of the computed and experi-

mentally measured responses. This is not a typical “x2” metric that is commonly seen in other

works.

17
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2.2 Necessary Conditions for Bona Fide Covariance Matrices

2.2.1 Definitions

For any general variance-covariance matrix, the following tests will determine to what degree
the ideal properties for data assimilation best-practices have been met. The notation is carried
out specifically for an input parameter covariance matrix but the same may be carried out for
experimental covariance matrices as well. In this work, all experimental covariance matrices
met the desired properties while all input parameter covariance matrices, to some extent, failed.

Any input parameter variance-covariance matrix Cy € RNeXNo  will have a corresponding
parameter vector a € RVe*! where N, represents the number of input parameters. This matrix
can be classified as either relative or absolute, denoted C\ and C,ps respectively. Standard
deviations of the parameters are represented in general by o while relative and absolute standard
deviations are given by o, and o .ps respectively. Correlation matrices will be denoted as Ceory

where the correlation p;,;, between parameters «;, and «;, may be defined as

C). .
Piviy = ( )1112 (2‘33)
031044
and
P11 .- PIN,
Ccorr = Pii . (234)
pNal cte pNaNa

2.2.2 Symmetric Positive Definiteness

A matrix must be symmetric positive definite to truly be considered a physically meaningful
variance-covariance matrix [§]. In general, this amounts to all eigenvalues of the (assumed
real) matrix to be positive (i.e. > 0). The determinant of a positive definite matrix is always
positive and hence a positive definite matrix is always nonsingular. Also consequently, each

of the matrix’s leading principal minors would also be positive [32]. If matrices A and B are

18
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positive definite then so is A+ B. The matrix inverse of a positive definite matrix is also positive
definite.

A matrix which does not exhibit these properties is not a variance-covariance matrix with
any meaningful physical system corollary. Matrices that are symmetric positive semi-definite are
often used as physical stand-ins for their positive definite counterparts but ultimately represent
a lack of sufficient information or poor modeling for the physical system at hand. A positive
semi-definite matrix contains eigenvalues that are all non-negative (i.e. > 0).

Testing for positive definiteness may be achieved by attempting a Cholesky Factorization on
the matrix in question. A representative algorithm for decomposing a matrix would utilize only
the lower triangular (or upper triangular respectively) portion of the matrix plus the diagonal.

The Cholesky Factorization is given as follows

Cc=LL"=U"U, (2.35)

where C, the matrix in question, is decomposed into L (U), a lower triangular (upper triangu-
lar) matrix with strictly positive diagonal entries, and LT (U7 denotes the transposition of L
(U). In the event that one of the leading principal minors of matrix C' is found to be negative,
the representative algorithm would exit prematurely because continuing would ultimately lead

to attempting to take the square root of a negative number.

2.2.3 Physical Correlations

One of the most familiar measures of dependence between two quantities is the Pearson product-
moment correlation coefficient defined in Eq. It is a corollary of the Cauchy-Schwarz
inequality that the correlation between any two quantities cannot exceed 1 in absolute value.
In the case of a correlation between a quantity x and itself, the correlation necessarily would
be equal to 1. On the other end of the spectrum, the correlation between z and —x would be

equal to —1.
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The correlation matrix C.or is a collection of these Pearson correlations between each of
the input parameters. C.o; has the property that every correlation along the diagonal should
necessarily be equal to 1 since this represents a parameter’s self correlation. Also, every off-

diagonal entry must be greater than or equal to —1 or less than or equal to 1.

2.3 Parameter Covariance Consistency Verification

In the case of a deterministic time-independent Boltzmann neutron transport model, input
parameters typically include isotopic densities, fission spectrum data along with microscopic
neutron (and potentially gamma) cross section information for a set of particular isotopes and
reactions that take place within the problem of interest. This data is tabulated as a function
of neutron energy and material temperature in a point-wise form that is considered detailed
enough for linear interpolation to form a continuous energy approximation [3I]. Oak Ridge
National Lab’s (ORNL) SCALE code package releases this data in a binary AMPX format for
use within various code modules.

Cross section covariance information in the form of a binary COVERX formatted file is also
distributed along with the release of the SCALE code package. This file contains covariance
information in a multi-group energy structure from a variety of sources. Main components
are broken into high and low fidelity covariances associated with the isotopes included in the
SCALE evaluation.

High fidelity covariances are evaluated from nuclear data files that belong to a specific library
(e.g. ENDF/B-VII, ENDF/B-VI or JENDL3.3). Differential experimental measurements and
their uncertainties are used in a regression algorithm to calibrate parameters in a nuclear physics
model [28]. Unfortunately, only a small number of isotopes have yielded such consistent results.
Several of the covariances that were included in the ENDF/B-VI release were withheld from
the VII.O release due to incomplete or otherwise inconsistent data and/or practices [13].

In an attempt to provide a complete but approximate release, ORNL’s SCALE group in

collaboration with Los Alamos National Lab, Argonne National Lab, the National Nuclear Data
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Center and the United States Department of Energy accomplished a low fidelity covariance
project which aimed to provide a comprehensive listing of covariances for isotopes included
in the ENDF/B-VII release [30]. Low fidelity isotope covariances had to be approximated and
decoupled from their original evaluation procedure. To do this, sometimes crude approximations
were used to complete the project on schedule.

In the current state, capabilities to construct and evaluate full parameter covariance matrices
have been created. These parameter covariance matrices are formed once all input parameters
are known and gathered as a result of the desired responses. The proposed tests, detailed in the
next section, have been carried out on problem-specific covariance matrices that are generated

on the fly at run-time pulling from data stored in quick access Python format known as a pickle.

2.4 Evaluation of SCALE Covariance Matrices

2.4.1 Covariance Data Hierarchy

Nuclear data from the various libraries were processed with Oak Ridge National Lab’s PUFF
code and formatted into the binary COVERKX file that is released with SCALE [33]. Utilizing
the COGNAC module of the AMPX utility suite that ships with SCALE , the binary format
was converted to an ASCII version of the COVERX format. Using Python, a reader was created
to read in the information given within the file.

It is important to note that the information given in the file is composed of sub-matrices
of the eventual complete covariance matrix to be generated on a problem specific basis. For
example, a hypothetical experiment which includes water (H20) and Uranium-235 contains
m; = 3 separate isotopes of interest (1H,190,23°U). Then, say that a total of m, = 3, namely
fission (f), absorption (a) and neutron scatter (s), reactions occur in the hypothetical exper-
iment. Next, let there be myg = 3 distinct domains «, 8 and 7 which could represent either
different temperature or even spatial cells due to self-shielding. Lastly, assume the number of

energy groups to be my = 44. This setup gives an input parameters covariance matrix C, of
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dimension m = mg * m; * m, * mg = 1188.

Cuimi Cuioi6  Cuiu2ss
Co=| Coism1 Cows016 Coisurass |-
Cuass,n1 Cuasso16 Cuzss,u2ss
where
£f £, fs
cj Cj Gy
Cij=|cy ot o ;(i,j = H1, 016, U235>,
7f b b
Cis,j Cf,f Cst
and
o, Cf}l o ’/3 Cf}l oLy Cf}l
. ’ ’ ’ i.j = H1, 016, U235
ng = ﬁ,acf}l ﬁ,ﬁcf}l ﬁ"nyj : ,
7 ’ ’ ’ kil = ,a, s
vaokl Bkl vy okl !
7/7] 7/7] 7’7]
where
orCll(1,1)  °PCH(1,2) orPC(1,44)
k.l Pkl pykil
opdid | PG (21) PPC5(2,2) PCi(2,44) |
G = : : ;
oPCI(44,1) OPCY (44,2) oPCI (44, 44)
i.j = HI1, 016, U235
kil = f, a, s
07p = a’ ﬁ’ ’)/

The sub-matrices found in the COVERX formatted file are represented by %P Ci]f 3l and are

given as relative covariances. All of the diagonal sub-matrix data (i = j, k =1 and o = p) are

provided while off-diagonal sub-matrices are more likely to be found within a specific isotope

(i = j, k # 1) versus within a specific reaction type (i # j, k = [). Cross domain data (o # p) are

not given. The correlations of sub-matrices that are not given may be set to zero by arguments
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of the maximum entropy principle described in [10].

2.4.2 Specific Tests Conducted on Covariance Matrices
2.4.2.1 Symmetry

For every covariance matrix, the symmetry was checked via
T
[|Co — C, ||co < €s.

A tolerance, €5 was specified and as long as the infinity norm was less than €z, the matrix

passed.

2.4.2.2 Non-physical Correlations

Since the correlations are not explicitly provided in the COVERX file, round-off and truncation
error will cause diagonals to potentially be slightly greater than 1. If, however, correlations exist
that are either noticeably greater (or smaller) than 1 (or —1) there is an obvious non-physical
discrepancy between the given relative covariance and the given relative standard deviations.
The diagonal elements of C,, were checked to make sure that the value was between 1 + €.
and 1 — e.. For all other elements, the value was checked to make sure it was between —1 — €.

and 1 + €.

2.4.2.3 Relative Standard Deviation Consistency

Since both relative standard deviations and relative covariances were given for each SCALE sub-
matrix, it is possible to check that the square of the relative standard deviations (variances)

match the diagonal elements of the relative covariance matrix, i.e.
k.k 0k, Cog—
07001',2' (979) — € < U?el(g) < ooCi,i (g7g)+67"7 g= 17""mg'

A check was also performed to make sure that the magnitudes of the relative standard
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deviations were sufficiently large enough not to cause unwanted division issues when computing
the correlation sub-matrices. As long as the relative standard deviation was greater than eg,

the division was deemed acceptable.

2.4.2.4 Positive Definiteness

As mentioned, the positive definiteness of a matrix may be confirmed if it admits the Cholesky
Factorization. Specifically, for each covariance matrix, an attempt to factorize was made via
LAPACK’s computational routine DPOTRF (version 3.3.1) [I]. As part of the routine, all
leading minors are confirmed to be positive. If one of the leading minors is not positive, the
routine returns prematurely and supplies an error code to warn the user that the matrix is not

positive definite.

2.4.2.5 Singular Value Decomposition

In the event that a covariance matrix fails to admit the Cholesky Factorization, a singular value

decomposition of the form

Ca = UazaVaTa

where U, and V,, are orthonormal matrices, i.e. Ug U, =1, VaTVa = I and X, is a diagonal
matrix whose elements are the singular values of the original matrix. This decomposition allows

the user to ascertain some measure of rank deficiency within the covariance matrix.

2.4.3 Summary of Results

The tests were conducted for each experimental setup once the parameter covariance matrix Cl,
was constructed. Results for the Godiva, Jezebel and LCT benchmarks (described in Chapter
are outlined below.

FEach system was broken down into isotopes, reaction types, energy groups and domains.
The choice of the number of energy groups included either 44 or 27 energy groups. According

to the SCALE manual, both choices are acceptable for either fast or thermal neutron systems
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[33]. Godiva’s system included 9 relevant isotopes, 7 reaction types, 9 domains and 27 energy
groups. Jezebel’s system included 12 relevant isotopes, 10 reaction types, 9 domains and 27
energy groups. LCT’s system included 30 relevant isotopes, 12 reaction types, 15 domains
and 44 energy groups. In this case, choices for either 44 or 27 group energy structure were
made merely for convenience. Nevertheless, information regarding covariance matrix structure
is reported for both energy group structures.

Note that covariances are not domain-dependent and not every combination of isotope /
reaction type / domain are physically meaningful. For instance, a particular domain may only
have 3 out of 30 isotopes present and only 4 of the 12 reaction types occur for those particular
isotopes. Nevertheless, sensitivities are given as a function of domain and, as such, either block
multiplication can be implemented or problem sizes could reflect this extra dimension when
propagating uncertainties if not prohibitively large.

Table contains a concise summary of dimensions (IN,) with regard to each system. The
first column contains the Full problem dimension, including distinction between SCALE ma-
terial domains, isotopes, reaction types and energy groups. Column 2 contains the dimension
of the Fundamental parameter covariance matrix when domain-dependence is eliminated. Col-
umn 3 further reduces on column 2 by removing all of the row / column pairs which contain

only zeros and is denoted as the Non-Zero Fundamental covariance dimension. Finally, column

4 reveals the numerical rank via SVD of the non-zero fundamental covariance matrix given a
cutoff for the singular values of € = 1le — 14.

As is evident from the SVD column of Table[2.1] none of the parameter covariance matrices
are positive definite. While the covariance data must be positive definite on the original energy
grid used by the evaluator to pass ENDF standards, [35], this does not hold once the cross
section information has been processed numerically to a different energy grid.

With regard to the other tests, including symmetry, physical correlations and relative stan-
dard deviation consistency, all covariance matrices passed with tolerances set no greater than

1.0e — 4 (the significant figures of the covariances were at best 4).
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Table 2.1: Input parameter covariance matrix (Cq) dimension summary.
27-Group Covariance Evaluation
Benchmark Non-Zero SVD
System Full Fundamental Fundamental e=1le—14
LCT 15930 2862 935 884
Godiva 756 729 545 411
Jezebel 1188 1160 670 477
44-Group Covariance Evaluation
Benchmark Non-Zero SVD
System Full Fundamental Fundamental e=1le—14
LCT 25960 4664 1501 591
Godiva 1232 1188 883 640
Jezebel 1936 1892 1082 774
26
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Chapter 3

Optimized Responses & Parameters

Following Data Assimilation

3.1 Computational Framework

3.1.1 Denovo
3.1.1.1 Overview

Denovo is a recent code development from ORNL that solves the three dimensional time-

independent Boltzmann transport equation given as

Q- Vi(7,Q, E) + S4(7, E))(F, Q, E) =

/ dn// dE'S,(7,Q — Q,E' — EW(#, Q,F) + Q(F Q,E). (3.1)
A 0

This parallel code has demonstrated excellent scaling up to tens of thousands of cores [16].
Written predominantly in C++ with a Python front-end and utilizing Sandia National Lab’s
Trilinos solvers, this discrete ordinances code is capable of handling extremely large problem

sizes up to and including full reactor core calculations.
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What highlights Denovo as the workhorse for this research is the recent implementation of
adjoint solution capabilities. With the adjoint, first-order sensitivities are obtained for responses

such as the k-eigenvalue, nuclide density and reaction rate ratios of the form
rp=—2 (3.2)

where o0;, i = 1,2 represent (usually but not necessarily) cross sections (microscopic or macro-
scopic), ¢ the scalar flux and (-, -),, may denote a user-defined inner-product space. For conve-
nience, the inner-product can be taken over the state space. To solve the k-eigenvalue problem,

recast Eq. [3.1] into an equation of the form

Q- V(7 Q, E) + S(7, E)Y(7,Q, E) =
/ dn’/ dE' S4(7, QY — Q, B — E)Yy(r, Q' E' )+
4 0

x(, B) / asy / dE' v;(F, ES (7, E (7, E'), (3.3)
47Tk A 0

where the angular flux ¢ and k-eigenvalue k are both implicitly functions of the cross sections
¢, Xs and Xy, the fission spectrum x and neutron multiplicity vy which are all considered
input parameters a and, in general, functions of space 7 and energy FE and neutron angle €2.

For convenience, Eq. may be written in operator form as
Ay = AF, (3.4)

where

00
AEQ-V+Zt(F,E)—/ dﬂ’/ dE' S, (7, — Q, E' — E),
47 0

— E oo
p=X(NE) / Y / dE v;(7, E')S 4 (F, E'),
47 A 0

and A = % This forward eigenvalue system may be solved to obtain ¢ and k. From these, the
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response 7, may then be computed.

3.1.1.2 Adjoint Sensitivity Analysis

Given the forward, nominal eigenvalue system in Eq.
(A(a) = A"F (")) ¢’ =0, (3.5)

with superscript “0” denoting the nominal state and with a slightly more general (but no less

enlightening) response than in Eq.

_ <0-9’ w0>w

0\ _ 0 0\ _ po
R(e)—RW ,a)—R _<08,1/10>w’

(3.6)
the sensitivity of the response with respect to a variation in parameters a is represented as
SR (€% h); where €’ = (u’, a”) denotes the nominal values of the state vector w and parameter
vector o while h = (h,, hq) represent arbitrary increment vectors in state (h,) and param-
eter (he) spaces. In this particular case, the state vector contains the angular flux while the
parameter vector contains the cross sections mentioned in the previous section.

As will be shown shortly, because § R (eo; h) is linear in the state variable, the sensitivity is
denoted DR (eo; h) in accordance with general practices [8]. The sensitivity can consequently

be written as

SR (% h) 2 DR (% h) = R), (€°) hy + Rl (€°) b (3.7)

where R, (eo) and R, (eo) denote, respectively, the partial Gateaux derivatives at e” of R (e)

with respect to w and a. For convenience in determining DR, take the natural log of the

response

In R’ =In{o?,¢") —In (09, ¢°) (3.8)

w '

29

www.manharaa.com




Taking the Gateaux derivative

& {n (RO + eaB) = In((of + cdon) , (40 + ehy)),

—In((09 + edoa) , (¥ +ehy)), } | (39)

Expanding and noting that only the terms that are first-order in e will survive, the sensitivity
is

DR (eo; h) . <50‘1,¢0>w + <O’9, h¢>w B <(502,1/10>w + <0’8, h1/’>w

RO (o1, 4., (02,9°),, '

Regrouping the terms yields

piteih) ([t (po1,0%), (372,
RO B <[<0?,¢0>w <o'(2)’1/}0>w] ,h¢>w + ( (o000, (o000 ) . (3.11)

(3.10)

The first term only contains variations (h,) in the angular flux while the second term only
contains variations (do1,do3) contained within the parameter vector. It is the variations in
the state which, at this point, are unknown. To obtain Ay either the forward sensitivity anal-
ysis procedure (FSAP) or the adjoint sensitivity analysis procedure (ASAP) from [§] may be
performed. In lieu of the fact that the typical number of input parameters far exceed the
typical number of output parameters in a transport model calculation, the ASAP will prove
computationally more efficient.

To utilize the ASAP and, thus, remove the dependence on hy in the sensitivity of the

response, first, the Gateaux derivative of the system (Eq. [3.5)) is taken:

% [(A%+e6A) — (A +€d)) (FO +e0F)] (v° +€ehy) } L:o =0 (3.12)

Again, expanding, only terms first-order in € will survive, yielding

(6A = X6F — F\) ¢° + (A° = \°F°) by, = 0. (3.13)
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Eq. B:13] is termed the forward sensitivity analysis equation. The unknowns are the variation
in the flux, hy, and the variation in the eigenvalue, dA. Given a variation(s) in an input
parameter cross section(s), subsequent variations in A and F' are readily available and the

eigenvalue system may be solved for hy and dA. To continue towards elimination of the hy,

dependency in both Eq. and Eq. [3.13] multiply Eq. with an (as of yet) arbitrary

function I‘}L, and integrate over the same space utilized in the response
0 0 0 0 0 40
<r;f,, (6A — \6F — FO5\) v >w + <r;f,, (A"~ \°F0) h¢>w —0. (3.14)

The terms multiplying hy may be transferred to I‘}L, by taking the adjoint of the operators

(denoted here as a “dagger” T)
T _NosF — 0 0 T\t 1t _
<Fp, (5A — A%6F — F°5)) 1) >w + <<A AR ) ri, hw>w —0, (3.15)

where, by mathematical uniqueness AT = 0. FL may be chosen specifically such that

of o3

(0,99, (03,49),

(AT - ,\TFT) rj =St = (3.16)

This apropos choice is exercised by multiplying Eq. by hy and integrating over the appro-

priate space

0 0

((AT=NF)Thy) = <[<U?ZLO> - <ag,0;0> ] ,h¢> (3.17)

recalling Eq. 3.1T] and Eq. 3.16} this leads to the following expression for the sensitivity

DR (e%h) (301,90, ~ (d02,4°)
R 7o), (o),

<r;, (5A — A% F — FO5)) ¢°> . (3.18)

The operator on the left-hand side of Eq. is singular and AT is a linear compact oper-

ator. According to the Fredholm Alternative Theorem, if the homogeneous adjoint equation,
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(AJr — )\FT) ¥’ = 0, has a non-zero solution and if and only if the adjoint source, ST on the
right-hand side of Eq. satisfies <ST,@/)>w = 0, then the inhomogeneous adjoint equation

has a necessarily non-unique solution. This condition is indeed met, as shown below:

t <O-(1)’¢O>w <Ug’¢0>w
<S,1/)> S - —1-1=0. (3.19)
0 0 .0
01,1/1 >w <0-27d) >'w
Moreover, because the solution to the inhomogeneous equation is non-unique, a unique solution
may be chosen as long as the orthogonality condition with the homogeneous forward angular
flux holds. Since the homogeneous adjoint flux is contained in the left nullspace of the adjoint
transport operator, i.e. (AT — )\TFT) T = 0, any additional terms involving the homogeneous
adjoint angular flux may be added to the general solution without affecting the answer. Note
that in Eq. [3.18] in the indirect term, there exists a dependence on the variation of the eigen-
value, . To eliminate this dependence, an additional term may be subtracted from I‘;r, to give

a unique solution, I'f:

It =17 — 4yl (3.20)

~ is chosen as

(T}, Fou0)
7= o (3.21)

To illustrate the elimination:

<PT , F0¢05A>w — oA < (P; - WT) ,F0¢O>w

<r}, F0¢>w <¢T, F0¢0>

— 6A <rj,, F01/10>w _ 5Am .

= 0.

Thus, the sensitivity of response R (eo) with respect to the input parameters a can be computed

as

DR (eo;h) <501J/)0>w _ <5U2ﬂ/’0>w _

R (01,99, (02,9,

(T, (54— \6F) y°) | (3.22)
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which only depends on the homogeneous forward angular flux (1/10), the homogeneous adjoint
angular flux (@ZJT), the inhomogeneous adjoint angular flux (FT) and variations in the operators
due to variations in the parameters. Given other responses, r = (ry;k = 1,..., N;), of the same
form as Eq.[3.6] only IV, inhomogeneous adjoint runs need be completed to acquire sensitivities
to every parameter in @ = (a;;¢ =1,...,N,). This is opposed to N, homogeneous forward
runs if one were to utilize just the forward sensitivity analysis equation.

As outlined in [15], a standard method of solving the inhomogeneous adjoint system would

be via a fixed-point iteration algorithm similar to
ATt — \piptne 4 gt (3.23)

where T'f is orthogonalized with respect to FY)° after each outer-iteration. While reliable,
this method proves slow to converge. Instead, R. T. Evans and Cacuci showed that a fixed-
source Generalized Minimum Residual (GMRES) algorithm yields mathematically the same
answer without outer-iterations using methods from [24]. With this new solution technique,
the inhomogeneous adjoint solve was demonstrated at over 37 times faster than a standard
fixed-point iteration with Gauss-Seidel for the Godiva Benchmark problem outlined in section

B2TT

3.1.2 Dbest_pred
3.1.2.1 Overview

best_pred , or “best predictions”, is an in-house parallel FORTRAN2003 code written to perform
the task of first order data assimilation as described in Chapter [2l This code was specifically
written and has been demonstrated to be scalable from a desktop PC all the way up to ORNL’s
2.3 peta-FLOP machine, Jaguar.

This highly modularized stand alone code encapsulates data in user-defined structures that

borrow principles based on current object-oriented programming standards. best_pred utilizes
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the robust and highly optimized libraries of ScaLAPACK to complete the matrix algebra nec-
essary to compute best-estimate updates for parameters and covariances [3].

Typically in a reactor physics model, the input parameter space is larger than the response
space; in most cases, more than an order of magnitude larger. In general, and most certainly
after best-estimate values have been calculated, all matrices involved will be dense. This fact
is what drove the decision to use ScaLAPACK as a solution library versus other open source

libraries such as SNL’s Trilinos which supports (mostly only) sparse matrix forms [22].

3.1.2.2 Code Inputs

Define Inputs to best_pred :

N, :  Input Parameter Dimension

N, : Output Response Dimension

«a € RNax1 . Input Parameters

C, €RNexNa - Input Parameters Covariance Matrix

rm e RN-XI . Experimentally Measured Output Responses

C,, €RN>*N- . Fxperimentally Measured Output Responses Covariance Matrix
T € RN»x1 : Computed Output Responses

S € RNV-xNa . Computed Sensitivities

Cor € RNexNe - Input Parameter Output Response Correlation Matrix

In the current state, best_pred reads in these seven matrices/vectors from separate files.
Consistency checks are performed to make sure the dimensions match and the user has an
option to check the input parameters and measured responses covariance matrices using some

of the tests discussed in Chapter
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3.1.2.3 Computed Matrices/Vectors

Define Computed Matrices/Vectors in best_pred :

d e RN-x1 = r—r™

Cre €RN>N - 5C,S8T

Cqy €eRNN — C..—CL ST —CoS+Cn
x? eRY™! = dfc;'d

Coada E€RNXNr = (O, — CoST

Cra €RNN — (¢, —CT ST

aBf e RNl = a4 ChreCy'd

rBE c RN-x1 = "4 C’,,dC’d_ld
CEE e RNexNa = (O —CoaC;'CT,
CBP eRNNe = O, — CrqC;"CL,
CBE ¢ RNaxN:  — (O, — adcd_l C;Fd

More specifically, each of these data objects is represented on the computer as a set of
independent distributed memory blocks set up in a two dimensional block cyclic distribution
[3]. Typically, the symmetry (and positive definiteness) of the covariance matrices can be taken
advantage of and a Cholesky Factorization, similar to that shown in Eq. can be used most
efficiently to compute solutions. Extensions have been made via linkages to LU Factorization

and also to singular value decomposition routines in case more detailed analyses are sought.

3.1.3 Lemon
3.1.3.1 Overview

Lemon serves as the automated coupling mechanism between Denovo and best_pred . The input
parameters, a, the computed output responses, r, and the computed first order sensitivities,
S, are delivered by Denovo to best_pred . Input parameter covariances are read in from a

COVERKX file described in section 2.3] Experimentally measured responses and covariances,
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r™ and Cpy,, are constructed manually based on information given in sections [3.2.1.1] B.2:2.1]
and For the experiments described below, Cq. is initially set to zero.

The problems in this work generate large volumes of data that need to be stored and
organized efficiently. Lemon , a set of Python scripts currently still under development, will
be able to complete not only the data transfer and run sequences necessary for everything

described in this Chapter but also for items described in Chapter [4]

3.2 Applications

A reaction rate ratio (fission or activation) is defined here as the ratio of a particular isotope’s
neutron reaction rate divided by a different isotope’s neutron reaction rate at a particular

volume AV in the reactor core
(o1,) foil

T = s
<027 ¢> foil

(3.24)

where

<a,b>fm.lz/ / ab dEAV
AV JO

and o; = 04(7, F), i = 1,2 denote microscopic cross sections as a function of space () and
energy (F).This type of response as well as the critical eigenvalue will be the focus of the

following experiments described below.

3.2.1 Godiva
3.2.1.1 Benchmark Description

From Los Alamos Scientific Laboratory in the 1950’s, an experiment to determine the critical
mass of a bare, 94 wt% 23U sphere of highly enriched uranium was termed “Lady Godiva”.
The sphere consisted of two identical sets of nested “Oak Ridge” alloy (oralloy) hemispheres
shown in Figure 3.1 The top hemisphere rested on a 0.015 inch thick plate of stainless steel

while the lower hemisphere rested on a thin-wall aluminum cylinder. Remotely, the lower half
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was raised in contact with the underside of the stainless steel plate and neutron multiplication
measurements were taken.

Two configurations were utilized: a bare, unreflected sphere and a series of concentric
shells deemed Godiva “bare” and “shell” experiments respectively. In this work, only the bare
configuration will be used. For the purposes of this demonstration, the pertinent information
compiled by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) on
Godiva bare is repeated in this document for completeness [4].

The radius of the bare sphere was 8.7407 ¢m with a density of 18.74 g/ecm3. The weight
percent of 234U is given as 1.02 wt% while 23U is 93.71 wt%. The remaining fraction contains

28U . Table contains the atom densities for the bare sphere.

Table 3.1: Composition of the uranium in Godiva bare.

Isotope Atom Density
(atoms/barn — cm)
234y 4.9184e-4
23517 4.4994e-2
2381y 2.4984e-3

There were several experimental measurements using Godiva bare but of interest for this
work were the spectral indices at the core center. More specifically, central fission ratios and
central activation ratios of several isotopes are compatible with Denovo ’s inhomogeneous ad-
joint capabilities described in section

Table contains the experimentally measured spectral indices of the responses used in this
work along with their relative standard deviations. It also contains the measured k-eigenvalue

with its relative standard deviation. A typical input listing for cross section processing prepa-

ration via SCALE 6.1 is given in Appendix
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Figure 3.1: View of Godiva shell in disassembled mode with one hemisphere resting above on
the stainless steel plate and one below on an aluminum thin-wall cylinder.
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Table 3.2: Experimentally measured response values for Godiva
bare. Values were taken from ICSBEP HEU-MET-FAST-001 Ap-
pendix B, Table F unless otherwise noted.

Response || Measured + Rel. Std. Dev.
kefy 1.000* =+ 0.001
op (B30 ) Joy (*°U) 0.1647 + 0.011
ar (383U ) Joy (335U ) 1.59 + 0.019
o (237Np )/or (335U0) 0.837 £+ 0.016
ar (PPu ) Jos (2350 1.402 + 0.018
oy (*Mn ) /oy (35U 0.0027* £ 0.07
o (83Cu ) fos (2350 ) 0.0117° £+ 0.05
7 (b )y (U)o £ 01

a [CSBEP HEU-MET-FAST-001 Appendix D, Table D; see [4].
b CSEWG Table 7; see [17].

3.2.1.2 Computation of the Space-Dependent Neutron Flux Sensitivities

All theory in this section is based on the information from Cacuci’s Sensitivity and Uncertainty
Analysis book, volume I [§] and original article [7] that introduced the “ASAP for operator-type
responses.”

Given the energy integrated scalar flux and macroscopic fission operators

E
6 (2,9, 2) = / dE [ 494 (2.9, E.9), (3.25)
0 4
E
dEZ 9 ) 7E b b ,E
zf(x,y,z)zfo ,J;(xyz )¢9,z ), (3.26)
[EAE ¢ (2,9, 2 E)
consider a response
¢ (z,y, 2)
R(¢ a)= 2082 3.27
(o) =5 (3.27)
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where the inner-product space is defined as

a b c
b= [ o [ [ aep ez, (3.25)

The inner-product is defined over a symmetric octant of a reactor core with the volume V' = abc.

As in Eq. take the natural log of the response for convenience

In R’ =In¢" (z,y,2) — n(3%,¢") . (3.29)
Next, take the Gateaux derivative
% {In (B + edR) = In (¢° + chg) —In (2 + e0%y) , (¢ +¢ho)),, || _. (3.30)
which gives the sensitivity
DR(R) hy(yz) (Zhhe), (80%), a1

RO o (z,y, 2 0 40 0 0>
wnd (o). (z),
The first two terms both belong to the partial Gateaux derivative of R with respect to the
scalar flux

Zo,hd, EO?'
R:z) (60) h¢ — h’¢ ($7y7 Z) _ < S >w — 1 — < U >'w h¢ (:L',y, Z). (332)

Sl (sy)  |6Ena (nhe0)

What distinguishes this indirect term from the one shown in section [3.1.1.2]is the fact that it
is an operator as opposed to a functional. The previous adjoint sensitivity analysis procedure
relied on the fact that the response was indeed a functional.

To proceed with the evaluation of the indirect effect term, consider an orthonormal set of
basis functions (as proposed by Cacuci in [8]): in this case, a three dimensional Fourier series

expansion. If the global origin of the system is chosen at the center of the reactor core, the flux,
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for the Godiva, Jezebel and LCT systems, is even in each independent spatial variable, i.e.

d)(l‘,y,Z) = ¢(_$,y,z),¢($,y,z) = (]S(Jf, Y, Z),QS(J,‘,y,Z) = ¢(x,y, _Z)

In this case, the sine term is identically zero and subsequently dropped in the Fourier expansion:

Ry (€") hg =
2:0((;(; / dw/ dy/ dzEf z,y,2) hg (x,y, 2) +

OOOOOO

>3 {m [ s / ay [ dz% > S(e%x)cos(mf_g)cos(m_j)}x
o () on (2 o (1) (333

The first term and the terms in between the curly braces {-} represent the Fourier coefficients
with ag,, the normalization coeflicients for each term. Because the indirect effect term is part of

an inner-product for the Fourier coefficients, the terms multiplying hy may now be represented

as

R (") ho =

Ty,

555 fo (s () o () om (45) 1)}

cos (£ os (m 52 con () (3.34)

In the case of a response functional, only one term of the Fourier series (the constant term)
would survive. Although the summations here are infinite, in practice, only a finite number of
terms are evaluated, depending on the complexity of the system and the nature of the variation.

Recalling Eq. the same procedure for choosing adjoint sources may be utilized for each
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term of the Fourier expansion, leading to the following inhomogeneous adjoint equations

0
— ngn = almn d) (ml Z) - Ef (Em’ y, Z)
r 0
v (o),

(AT it FT) T

Imn

;(¢,m,n) =(0,0,0), (3.35)

(AT - ATFT) ri = M‘;ﬁ—% cos <€?) cos (m%y) cos (n%) :(6,m,n) # (0,0,0). (3.36)

Note that all adjoint sources are orthogonal to the forward flux as is required for a non-trivial
solution to exist. Lastly, the summation of all adjoint fluxes yields the final inhomogeneous

adjoint flux that is used in computing (z,y, z)-dependent sensitivities

[e.e] o0 o0
I (z,y,2) = Z Z Z Fzmn cos (6%) cos (m%y) cos (nﬂ—cz) . (3.37)
=0

(=0 m=0n

Finally, normalization coefficients may be generated via:

Qpmn =

o dz fé’ dy [, dzcos (EH)2 cos (m”—y)2 cos (nﬂ)2 ' (3.38)
a b c

Thus, instead of computing a response for many spatial locations (points) within a reactor,
it is possible to compute a few inhomogeneous adjoint fluxes up to a particular wave number
(¢ +m + n) of the Fourier expansion and obtain a very good approximation granted that the
user chooses the appropriate basis functions for the given application. For instance, Chebyshev
polynomials would likely make for an excellent choice given that they can be, by definition,
exactly equal to the underlying response value at a given set of user-chosen points.

One more worthy note, since the systems are in three dimensions and the flux is symmetric,

there is the convenient fact that

B cos(é%) B cos (fﬂ) B cos(fﬁ)
— L qp= | —/— Ll qy= [ — L/ d 3.39
/a ¢ (x,70,70) ! o ¢(10,y,70) o ¢(ro,70,2) ‘ (3.39)

where « and 3 in this case are arbitrary bounds, L is some arbitrary distance and r( is some
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aribtrary fixed point in space. So, if the z, y and z boundaries defined within the inner-product
are equal to one another, i.e. a = b = ¢, then the number of Fourier coefficients that need be

computed can be reduced. Put in other words, given the Fourier coefficients:

Apmn = Qomn <gb(:z,1y,z) COS (E%) cos <m%) cos (n%) ,h¢> (3.40)

w

then, when a = b =c¢ = Apmn = Atnm = Anem = Anme = Apne = Apen. In the context of,
say, including wave number combinations up to (¢,m,n) = (20,20, 20), this would reduce the

number of adjoint sources from 9261 to 1771.

3.2.1.3 Sensitivities of the Normalized Space-Dependent Flux

For the purposes of demonstration and rapid development, the Godiva sphere as described
in Chapter [3] is used. This 10 x 10 x 10 mesh restricts the number of Fourier wave number
combinations that may be resolved to a total of 103. Given that the problem domain boundaries
are all equal this reduces the number of Fourier coefficients needed to 220. This means that
with a total of 220 inhomogeneous adjoint runs the entire space may be characterized and there
will be no difference (to machine-precision) of the evaluated sensitivity using the operator-type
response or a functional-type response similar to Eq. evaluated at a single point. Now, if
machine-precision accuracy is not required, many fewer runs may be carried out to achieve the
desired accuracy at select points within the system.

For the actual demonstration, without loss of generality, the response of interest is given as

¢ (‘/L" y? Z)

R(‘Tayaz7¢) = T’
avg

(3.41)

where @y is the average flux throughout the problem domain. All 220 inhomogeneous runs
were completed for the operator-type response to demonstrate the full convergence throughout
the three-dimensional problem domain (despite the fact that Godiva and the operator-type

response can be treated in one-dimension). In addition, 10 inhomogeneous adjoint runs with
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responses of the form

R (21, 35, 210 6) = W (3.42)
avg

where (z;,9;, 2) represents a particular cell within the problem domain. Specifically, the delta
responses chosen for this demonstration include the 10 points that belong to the (z;,y;, 2;); i =
0,...,9. Similar cases have been demonstrated with a combination of all z, y and z data that
produce identical results but the data is taken for convenience in plotting techniques.

Wave number bounds are defined as a single number to keep notation concise. A wave
number bound of 0 would only include contributions from the inhomogeneous adjoint solve
with (¢, m,n) = (0,0,0). A wave number bound of 1 would include the inhomogeneous adjoint
solves (¢,m,n) = (0,0,0),(1,0,0),(0,1,0) and (0,0,1) (keeping in mind that in actuality only
(0,0,0) and (1,0,0) would need to be solved because a = b = ¢ and the flux is symmetric).
To obtain the (¢,m,n) combinations that belong to a particular wave number bound, any
combination of £+m+n that is less than or equal to the wave number bound would be counted
provided that each individual £, m or n value remains below the resolution of the mesh. For
example, a wave number bound of 27 on this 10 x 10 x 10 problem would include every wave
number combination (9,9,9) and lower but not, for instance, (27,0,0). The following python

code snippet will generate the (¢, m,n) combinations used for this Godiva example.
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#!/usr/bin/env python
from numpy import

# combinationList contains all 1000 combinations

combinationList = list ()
waveNumberBounds = 27
maxMeshResolution = 10

for 1 in xrange(waveNumberBounds+1):
for m in xrange(waveNumberBounds+1):
for n in xrange(waveNumberBounds+1):
if 1 + m 4+ n > waveNumberBounds: continue
if 1 >= maxMeshResolution: continue
if m >= maxMeshResolution: continue
if n >= maxMeshResolution: continue

combinationList .append(tuple ((1,m,n)))

sortedCombinationList = list ()
for combination in combinationList :

sortedCombinationList.append (tuple ((sorted (combination, reverse = True))))

# sortedCombinationSet contains the reduced 220 combinations

sortedCombinationSet = sorted (list (set(sortedCombinationList)))

Figure [3.2) illustrates a typical output for the sensitivity of the response due to a change
in the cross section for Uranium-235 fission. Several wave number bounds have been chosen
to illustrate the convergence of the sensitivity. Figure [3.3] compliments the previous figure,
demonstrating that by wave number bound 7 the percent difference between the operator-type
response and the delta response is less than 10% for a majority of spatial locations. Continuing,
by the point at which wave number bound 15 is reached, the percent difference is less than 2%
for all locations. This behavior is system, response and basis choice dependent. The smoother

the variation in the response, the easier to capture the effect with fewer terms in an expansion.
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Delta Response and Various Wave Number Combinations for Operator-Type Responses

0.06
HHH- DELTA 1D: (92235, 18)
’ @D Wave Number Bnds: 1 ID: (92235, 18)
0.04f @D Wave Number Bnds: 5 ID: (92235, 18) |
? @D Wave Number Bnds: 8 ID: (92235, 18)
@ QD Wave Number Bnds: 12 ID: (92235, 18)
0.021 @89 Wave Number Bnds: 18 ID: (92235, 18) |
o S @89 Wave Number Bnds: 27 ID: (92235, 18)
0.00 1
o
-0.02 ]
S
g \ 4
—0.041 O 1

~0.06} g 8 ]

-0.08 E
o
-0.10F @) E
o
~01% 2 4 6 8 10

Cell Number

Figure 3.2: Godiva representative operator-type response sensitivity to parameter Uranium-235
fission plotted throughout the problem domain for various wave number bounds.
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Operator-Type Response Sensitivity Percent Difference
from Delta Response Sensitivity
as a Function of Wave Number Bounds (Zoom)
Sensitivity: Uranium-235 Fission
. —Cell (0, 0, 0)
\ —Cell (1, 1, 1)
Cell (2, 2, 2)
—cCell (3, 3, 3)
—Cell (4, 4, 4)
—Cell (5, 5, 5)
/ —Cell (6, 6, 6)
—cCell (7,7,7)
N —Cell (8, 8, 8)
—cCell (9, 9, 9)
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Figure 3.3: Godiva representative operator-type response percent difference compared with
delta-type response plotted throughout the problem domain (Cell(z;, y;, 2)) for all wave num-
ber bounds (0 through 27).
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3.2.1.4 Calibration Results

Godiva bare was run using SCALE ’s ENDF/BVIIL.0 27 group neutron library on an (x,y,z)
mesh of (10,10,10) for a symmetric octant of the sphere. With IN, = 8 output responses
and m = 756 input parameters the normalized chi-square metric was x?/IN,. = 0.558304 (see
Eq. . Assuming a significance level of the central 90% range of a chi-square test yields
(0.34158,1.9384138). This amounts to giving a degree of confidence that the experimental and
computed responses are indeed mutually and jointly consistent since the Godiva value falls well
within this range.

Table contains the measured, computed and best-estimate response values along with
their respective percent standard deviations. Notice how the standard deviations, at worst (to
the precision of the table), do not change and at best improve the least well known responses by
several percent. Figure represents a graphical version of the same data, only all the values
have been normalized by the mean value of the measured response.

Figure[3.5]illustrates, for each response, the top eight relative sensitivities. For each response

., relative sensitivities were ranked such that ‘Sf? | < }Sff;’ <...< S,I?N ‘ In other words, the

1

eight parameters corresponding to the largest relative sensitivities are displayed in Figure (3.5
Recall that each response (except kesf) includes the ?*Ug . reaction rate in the denominator
and, as expected, due to this direct contribution the parameter appears in each response’s
top eight ranked relative sensitivities. These sensitivities were generated with R. T. Evans’s

sensitivity module implementation described in section [3.1.1.2
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Table 3.3: Godiva (M)easured responses values
along with Denovo (C)omputed nominal values
and (B)est-estimate predicted values with respec-
tive percent standard deviations.

Response || Value =+ % Std. Dev.
M 1.000  £0.1
kef f C 1.000770 +1.036
B 0.999965 40.099
» M 01647  £L.1
%55) C 0.158845 +2.986
rPU) B 0164003 +1.022
» M 1590  +1.9
%ﬁ) C 1566124 +1.062
PU) B 171240 0917
M 0837  +16
% C 0.852371 +6.802
! B 0.838473 -+1.554
M 1402 +1.8
% C 1.385034 +0.718
! B 1.390735 -+0.547
N M 00027 7.
% C 0002931 =+9.481
! B 0.002763 +5.642
o M 00117 5.
% C 0010735 +11.665
! B 0.011506 -+4.603
o M 0.03 10
% C 0035269 +8.628
! B 0.032354 +6.517
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Figure 3.4: Godiva bare comparison of measured, computed and best-estimate response values.
The figure is normalized to the mean of measured response on the y-axis while each response
considered spans the x-axis.
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Figure 3.5: Godiva bare energy integrated relative sensitivities for each response for the top
8 contributing parameters. Y-axis label denotes particular parameter while x-axis denotes the
(unit-less) relative sensitivity. X-axes for each sub-plot are common.
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3.2.2 Jezebel
3.2.2.1 Benchmark Description

During the 1950’s, the 23%Pu  Jezebel critical assembly was built and operated at the Los
Alamos Scientific Laboratory [25]. Actually, there were three separate Jezebel assemblies re-
ferred to as ?Pu , 2*°Pu and 233U Jezebel. For the purposes of this demonstration, the
pertinent information compiled by the ICSBEP on 2*°Pu  Jezebel is repeated in this document
for completeness [4].

The exact specifications of all the parts and pieces that comprised the original 23Pu Jezebel
shown in Figure[3.6|are not available but the Los Alamos staff determined an equivalent uniform,
homogeneous spherical computational model that is well defined and has been accepted as a
critical benchmark experiment [21].

The average composition of the delta-phase plutonium alloy was 98.98 wt.% plutonium and
1.02 wt.% gallium. The isotopic composition of the plutonium is given in Table The
sphere of plutonium alloy had a mass of 17,020 grams with a density of 15.61 g/ecm? and radius

6.3849 cm.

Table 3.4: Composition of the plutonium in 23*Pu Jezebel

Isotope | Abundance (at.%)
9py, 95.2
240p,, 45
241p,, 0.3

There were several experimental measurements using ?*Pu  Jezebel but of interest for
this work were the spectral indices at the core center. More specifically, central fission ratios
and central activation ratios of several isotopes are compatible with Denovo ’s inhomogeneous

adjoint capabilities described in section
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Figure 3.6: (a) The active portion of the original Jezebel assembly. (b) Jezebel in its assembled
configuration. (c) Jezebel in its disassembled, or safe, configuration.
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Eq. is what is reported in [4] although originally only individual microscopic cross
section reaction rates were reported in [5]. Ratios were given to compare the %Pu  Jezebel
experiment to other experiments including Flattop-25, Big Ten, Topsy and Van de Graaff. Ta-
ble [3.6] contains the experimentally measured spectral indices of the responses used in this work
along with their relative standard deviations. It also contains the measured k-eigenvalue with
it’s relative standard deviation. A typical input listing for cross section processing preparation

via SCALE 6.1 is given in Appendix [A72]

Table 3.5: Atom densities for 22°Pu  Jezebel

Nuelide (atomsvarm - on)
Ga 1.3752¢-03
239py, 3.7047e-02
240py, 1.7512¢-03
241py, 1.1674¢-04

Table 3.6: Experimentally measured response values for 23°Pu
Jezebel. Values were taken from ICSBEP PU-MET-FAST-001 Ap-
pendix C, Table D

Response || Measured + Rel. Std. Dev.

kesy 1.000 £+ 0.002
or (U ) Joy (37U ) 0.2133 + 0.011
or (33U ) /oy (3°U) 1.578 £+ 0.017
o (**'Np ) /o (3350 0.9835 + 0.014
or (¥Pu ) /oy (35U 1.4609 + 0.0089
oy (*Mn ) /o (35U 0.0024 + 0.1
oy (B3Cu ) /oy (¥°U)) 0.0100 + 0.06
oy (PNb ) /oy (**U ) 0.023 £ 0.09

54

www.manharaa.com




3.2.2.2 Calibration Results

239pu Jezebel was run using SCALE ’s ENDF/BVIL0 27 group neutron library on an (x,y,z)
mesh of (10,10,10) for a symmetric octant of the sphere. With N, = 8 output responses and
m = 1188 input parameters the normalized chi-square metric was x?/N, = 1.1030540 (see
Eq. . Assuming a significance level of the central 90% range of a chi-square test yields
(0.34158,1.9384138). This amounts to giving a degree of confidence that the experimental and
computed responses are indeed mutually and jointly consistent since the Jezebel value falls well
within this range.

Table [3.7] contains the measured, computed and best-estimate response values along with
their respective percent standard deviations. Notice how the standard deviations, at worst (to
the precision of the table), do not change and at best improve the least well known responses by
several percent. Figure [3.7) represents a graphical version of the same data, only all the values
have been normalized by the mean value of the measured response.

Figure[3.§8|illustrates, for each response, the top eight relative sensitivities. For each response

1, relative sensitivities were ranked such that |Sf1| < |Sf2| <. <

SfNa ) In other words, the
eight parameters corresponding to the largest relative sensitivities are displayed in Figure [3.8
Recall that each response (except k.fy) includes the ?3Ug . reaction rate in the denominator

and, as expected, due to this direct contribution the parameter appears in each response’s top

eight.
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Table 3.7: Jezebel (M)easured responses values
along with Denovo (C)omputed nominal values
and (B)est-estimate predicted values with respec-
tive percent standard deviations.

Response || Value =+ % Std. Dev.
M 1.000  +0.2
keyy C 1.004021 +1.597
B 0.999947 40.198
» M 02133 £L.1
%ﬁ) C 0.206333 +3.186
rFU)B 0213382 +0.971
» M 1578 +17
%ﬁ) C 1553344 +1.036
rPU) B 1562144 40879
M 09835  +14
% C 0977273 +7.039
7! B 0.984262 +1.392
" M 14609  +0.89
% C 1421973 40.794
7! B 1.439883 +0.509
N M 00024 +10
% C 0002557 +9.1485
! B 0.002465 -+7.3579
o M 00100  %6.
% C 0.009512 +10.570
! B 0.009828 +5.225
o M 0023 7.
% C 0.029013 +8.626
! B 0.025186 -+6.026
56

www.manharaa.com



1.4 ! ! ! ! ! ! !

e Rcomputed 1|
13 * Rmeasured
’ A RbestPred
- - [ ]
1.2k eeee .............. .............. .............. .............. .............. ......... i

oo T T— S .
0'8 I Il Il Il Il Il Il
T(keff) ,,,(0_}]238) 7_(0_;}233) 7‘(0’;\[1)237) 7,,(0,;’71239) ,r(a_éwn55) r(0$u63) 7,((,_}5%93)

Figure 3.7: Jezebel comparison of measured, computed and best-estimate response values.
The figure is normalized to the mean of measured response on the y-axis while each response
considered spans the x-axis.
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Figure 3.8: Jezebel energy integrated relative sensitivities for each response for the top 8 con-
tributing parameters. Y-axis label denotes particular parameter while x-axis denotes the (unit-

less) relative sensitivity. X-axes for each sub-plot are common.
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3.2.3 LEU-COMP-THERM-008
3.2.3.1 Benchmark Description

Babcock and Wilcox’s Lynchberg Research Center performed a series of lattice experiments
with low-enriched UQ» fuel in the early 1970’s. In total, there were a series of 17 experiments
conducted. All have been documented as part of the ICSBEP under the designation “LEU-
COMP-THERM-008” (shorthand LCT) [4]. For this work, only “loading 2” will be considered.

Experiments were conducted inside of a large aluminum tank containing borated water and
UOs fuel rods. Water height was kept at exactly 145 ¢m and soluble boron concentration was
adjusted until the particular fuel configuration was slightly supercritical at 1.0007 for k.r¢. The
boron concentration was determined by titration with a standard deviation of £3 PPM boron.

LCT, shown in Figure [3.9] closely resembled a 3 x 3 array of pressurized water reactor
(PWR) fuel assemblies with lattices configuration of 15 x 15 fuel pins per assembly. The 9
assemblies were surrounded by an irregularly shaped driver region that contained identical fuel.

For loading 2, a total of 4808 fuel rods and 153 water holes are configured in a uniform
square pitch of 1.63576 ¢m. Dimensions are given in Figure The outer radii of fuel rods
and their aluminum 6061 cladding were 0.514858 c¢m and 0.602996 c¢m respectively. The density
of UOy was taken as 10.24 gm/cm? while the density of the Al was taken as 2.5052 g/cm? to
correct for fuel/clad gap. The density of the water was taken at 20°C; 0.99823 g/cm?. Isotopic
number densities are given in Table The effect of impurities in the fuel is modeled as an
addition of B .

In addition to criticality measurements, relative rod-by-rod power densities were tabulated
for the central assembly along a symmetric octant of the assembly in the z = 0 plane shown in
Figure The numbers are used as labels for the experimental data shown in Figure
Note that the data in Figure [3.12] is modified from its original ICSBEP source. The report
claimed that the pin powers had been normalized by the average pin power across the entire

central assembly. Upon calculation of the average, it was equal to 1.0338. The figure was
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Figure 3.9: LCT Core Configuration.
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Figure 3.10: Vertical Dimensions of LCT.
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Table 3.8: Atom densities for LCT Loading
2. (Imp)urities modeled as boron;(Nat)ural
isotope ratios; (Wat)er; (Sol)uable in water.

Nuclide (atoms b o)
2347 4.5689¢-6
23577 5.6868e-4
238(7 2.2268¢-2
160 (Fuel) 4.5683¢-2
198 (Imp.) 2.6055e-7
Mg (Nat.) 6.2072e-4
2TA1 5.3985e-2
Si (Nat.) 3.2230e-4
Ti (Nat.) 4.7263e-5
Cr (Nat.) 5.8029e-5
55Mn 4.1191e-5
Fe (Nat.) 1.8910e-4
Cu (Nat.) 5.9353e-5
Zn (Nat.) 5.7679-5
H 6.6737¢-2
160 (Wat.) 3.3369e-2
10B (Sol.) 1.4821e-5
1B (Sol.) 5.9657e-5
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renormalized to a value of one and this is what is shown here.
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Figure 3.11: LCT central assembly pin numbering for a symmetric octant. White cylinders are
water holes while the rest is fuel.

After having attempted parameter and response optimization via first-order data assimila-
tion, some of the computed responses were discrepant with their measured counterparts. It was
not clear exactly how the pin powers were measured other than for a specific excerpt in the
ICSBEP write up. Unfortunately, the original text was not able to be located.

The only words given to the experimental setup with regards to the pin powers were “/[t/he
mid-plane relative power density over one-eighth of the central element was obtained for selected
loadings. . . by using a sodium iodide (thallium activated) scintillation counter to count
collimated fission product gammas from activated fuel rods”.

To be able to model what was experimentally collected would require more detailed informa-
tion about the dimensions and setup of the detector(s), what conditions were the measurements
taken at, etc. Another important piece that Denovo is capable of but is not being used cur-

rently is the coupled neutron gamma libraries. Based on these grounds, drawing conclusions
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Figure 3.12: LCT central assembly experimental relative pin-by-pin power densities for a sym-
metric octant at the z = 0 plane. Top numbers are labels shown in Figure[3.1T} Middle numbers
are the power densities for that rod relative to the average for all rods in the central assembly;
Bottom numbers are relative standard deviations.

from data adjustment procedures was deemed inappropriate. Nevertheless, this problem still
can serve as a vehicle for the demonstration purposes of data optimization and higher-order
validation techniques.

A typical input listing for cross section processing preparation via SCALE 6.1 is given in

Appendix

3.2.3.2 Calibration Results

The responses to be computed, with the intention of comparing directly to the reported mea-
surements, consist of k.ry and relative pin powers in the central assembly. The relative pin

power for pin ¢ can be defined by

<Gf7 ¢> pin;
<Uf ) ¢>central assembly ’

ri

(3.43)
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where

<0-fa¢>pini = AA da:dydEaf(m,y, ZO7E)¢(:E7Z/7 ZO7E)7 (344)

<0-f, ¢>Central assembly = /AA dxdydEUf ($a Y, 20, E)¢($a Y, 20, E)? (345)

and ¢ is the scalar flux, z( is the axial midpoint of the assembly, A A; is the area to be integrated
for pin 4, and AA is the area to be integrated for the entire 15 x 15 central assembly. There is
an implicit integration over z: the integrals are computed as sums over the cells contributing
to the integration range, where each cell has a finite length in the z direction.

LCT was run on Jaguar as a single octant configuration with up to 7000 processors. The
normalized fission reaction rates are shown in Figure Relative rod-by-rod pin powers are
shown for the central assembly in Figure The quarter assembly is mirrored to produce
the full result.

Cases were run with varying levels of detail, including spatial resolutions of 6 x 6, 8 x 8 and
10 x 10 cells per fuel pin; 27, 44 and 238 neutron energy groups as well as different discretizations
and angular quadratures. The computed versus measured response data shown in Figure [3.15
suggests that there may be differences greater than two standard deviations between measured
and computed values (even without the error bars calculated for the computed responses).

Denovo computed responses were compared directly with the given MCNP computed re-
sponses as a check on the validity of the answers. Results of the comparison are given in
Figure [3.16

The decision was made to compute only a few of the responses with an associated adjoint
calculation to produce first-order sensitivity values. These responses were specifically chosen
by looking at Figure and trying to find some of the “least discrepant” data. As discussed
previously, not enough information was given in the ICSBEP writeup to draw conclusions on
best-estimate predictions because the differences in computed and measured pin power proce-
dures serve as too large of a discrepancy to warrant meaningful information. Nevertheless, the

data assimilation framework may still be carried out at such a scale as long as the computational
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Figure 3.13: LCT axial z = 0 normalized fission reaction rate for quarter core symmetry.
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Figure 3.14: LCT axial z = 0 relative rod-by-rod power densities for the central assembly
(mirrored for full assembly depiction).
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resources are available.

For a particular instance, LCT was run using SCALE ’s ENDF/BVIIL.0 44 group neutron
library on a mesh of 8 x 8 cells per fuel pin for a symmetric octant of the core. With N, = 6
output responses and N, = 25960 input parameters the normalized chi-square metric was
X%/ N, = 0.38868053 (see Eq. . Assuming a significance level of the central 90% range of
a chi-square test yields (0.272563,2.09860).The x? metric is nearer to the boundary of the 90%
confidence interval than either Godiva or Jezebel but still well within the given range.

In this case, where the experimentally measured uncertainties are much larger than the
computational uncertainties, the data assimilation framework still reduces the overal uncer-
tainties (albeit only slightly). The uncertainties will necessarily always be reduced no matter
the quality of the experimental or computational data, even in scenarios with discrepant data.

Table [3.9] contains the measured, computed and best-estimate response values along with
their respective percent standard deviations. Figure [3.17] represents a graphical version of the
same data, only all the values have been normalized by the mean value of the measured response.

Figure illustrates, for each response, the top ten relative sensitivities. For each response

Ty, relative sensitivities were ranked such that |S’f1| < |Sf2| <...< SfN ) In other words, the

ten parameters corresponding to the largest relative sensitivities are displayed in Figure 3.18
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Table 3.9: LCT (M)easured responses values
along with Denovo (C)omputed nominal values
and (B)est-estimate predicted values with respec-
tive percent standard deviations.

Response || Value + % Std. Dev.

1.0007 +0.060
0.999523 +0.483
1.000682  £0.0595
1.047 +0.4
1.012703 £0.00545
1.012701  £0.00541
1.026 +2.2
0.981426 £0.00189
0.981427 £0.00187
1.003 +3.1
0.941852 £0.00560
0.941855 £0.00551
1.116 +1.1
1.088263 £0.00802
1.088258  +0.00785
1.118 £1.0
1.089721 +£0.00741
1.089716  £0.00728

kegs

Pin 10

Pin 12

Pin 13

Pin 14

Pin 15

WaRwaEwagwagwagwasg

71

www.manharaa.com




1.04 ! ! ! ! ! !
o Rcomputed
1.03} + R ” ................. ................. ..............

measured

RbestPred _ o : : :
1.02F--- ................ ................. ................. ..............

101 S N — N S SR ]

ook }}; ____________ .][, .............. Lo | E— —

) S A

0,98 T—— A— S— —

0.97h S SRS N ola . I S

0.96 | I I I I I
L Pin10 Pin1l2 Pinl3 Pinl4 Pin15

Figure 3.17: LCT comparison of measured, computed and best-estimate response values. Figure
is normalized to the mean of measured response on the y-axis while each response considered
spans the x-axis.
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Figure 3.18: LCT energy integrated relative sensitivities for each response for the top 10 con-
tributing parameters. Y-axis label denotes particular parameter while x-axis denotes the (unit-
less) relative sensitivity. X-axes for each sub-plot are common except for keyy.
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Chapter 4

Higher-Order Moments for
Quantifying Non-Gaussian Response

Features

4.1 Mathematical Expressions

In the case that numerical and/or modeling errors may be treated via input parameters uncer-
tainties within the input parameter vector a = (aq,- - , « Na)T, a typical representation of the

vector of responses, 7, as a function of the parameters is
r=r(a) = (r{(a), -, ry, (@), (4.1)

where r¢(a) indicates the computed response vector for a given set of parameters c.
Typically, to propagate parameter uncertainties through a computational model, a Taylor

0

series expansion of the responses about a set of nominal parameter values, o’ is carried out to

the desired order of accuracy. In contradistinction to Chapter [2|, second-order derivatives will
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explicitly be taken into account, implying an expansion of the form
1
r(a) = r°(a’) + Vré(a®) + é(cx — IV (a—a) + ... (4.2)

Rewritten in component form

r(a) = r¢(a’) + Z or da, + ! gi gi ot da, da (4.3)
i1=1 Oaiy[q0 " 2 i1=142=1 ey Oaxiy | g0 e .

where dav; = (;—a?). For readability, the superscript “c” on r¢ will be suppressed in subsequent
equations. Note that the following expressions are given in [9]. This work is a restatement of

the proposed framework given by Cacuci.

4.1.1 Expectation Value

The expectation value, E(r), is computed by integrating the expansion of the responses over

the unknown joint probability distribution p(ea,r)

E(r) = E(r(a)) = / r(c)p(a, r)da, (4.4)

[e3

where Dy, is simply the domain of all « values. Substituting in the second-order Taylor expan-

sion yields

Nao

ooy, p(a, r)da

af

E(r) = /D r(ao)p(a,r)da+/

D,

1 Jo N g2y
+§ /Da Z Z 6ai18ai2

i1=112=1

1 6041-1

o=

dai, 0, p(a, r)dex.

af
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Pulling terms independent of a out of the integrals gives

Br) = @) [ plarda+ry 2| [ daplair)da
@ i1=1 iy Do
+= Zzaa Do / da, b, p(a, r)dor.
i1=112=1 “ b2

The integrand in the first term integrates to 1 as p(e,r) is a probability distribution. The
integrand in the second term is the first central moment which is identically zero. The integrand
in the third term is defined as the covariance between parameter o, and parameter a;,. Thus,

the second-order expectation value is

OLNOL

E(r) = Z Z 8041180412

21 1io=1

cov(ozi1 , Q). (4.5)

4.1.2 Variance-Covariance

The variance-covariance matrix of computed responses is defined as

Cre = E([r — E(r)][r — E(r)]7). (4.6)

Focusing on a single general element we obtain

(Cre)r = E([ri — E(ri)llre — E(r)]); k,0=1,.., Ny.
Looking first at [ry — E(rg)] gives
8rk
ri — E(ry) daiy +
N, N. N,

No « 6 Tk 1 e [ aQTk
5a~ da, — = ——— 1 cov(ayy,yy,)
1121 1221 60[2180412 e 2 ilgl 1'221 aail 8ai2 af e
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Multiply with [r; —

E(r)]:

[Tk - E(Tk)][m — E(rl)] =
N, N,
- ark = 8rl
day dag, | +
lezl 9o, ad ll] LQZZI Daviy af "
N N
]. 2 87“k < < 8 rl
5 da 5a‘ ooy —
2 -’ilz::l Oaiy af “] lgz:l zgz:l dai,0ai, s
[ No N, N. N
1 a « 827'k o « 827'k
5 — | oy, 0y, — .
2 212:: 122;1 Doy 00y |0 21§=:1 22§=:1 dai, Ocviy
[ No N, N. N
]. o a 827"k o a 821"k
5 ——| Sy, 00, — _Z 'k
2 21231 zzzjl Do Doy g0 zlzjl zzzzl Do, Doy
[ No N,
]. @ o4 82,” a a 827‘1
5 T 5a oy
2 _; Mgl 8ai3aai4 e 2321 2421 80‘1380614
Rearranging:
[re — E(Tk)][?”z —E(rn)] =
a 8 a
SRS O
i1=119=1 a’tl am

)

0wy, 0o, 0, Oy, Oav, Oy

i1=112= 113—1(

No No No No g2, 0%y
4 Z Z Z Z Doy, Doy Doy Dy, | o

7,1 lig=113=114=1

af

X

[0, daviy 00, — dau, davi, cov(ay, aiy)

—cov(ay,, i, )0y 00, + cov(ai,, iy )cov(aug, iy )] -

7

cov(ay, , iy)
o

cov(uy, iy
aO

[50[2'1 6ai25ai3

cov(Qiy, vig) | +
or |
d dovg | +
Oy af

- (5()[1'100U(Oé¢2, ai3)] +

(4.7)
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Multiply by probability p(a, ), integrate over the parameter domain and factor out constants

evaluated at a®:

E([ry, — E(r)|[r — E(n)]) =
" Na

N,
Ok I
ilgl 1'22:1 8O‘il 8ai2

N, No N,
I 2 2 X [ 0r, 0%y or 0y
5 Z Z Z (8041'1 8()41'28041'3 +

Oay, 0oy, Oa;
i1=14s=1143=1 e

/ da, b, p(a, r)da +
ab (o3

X
af

(/ [Scvi, S, S, pla, ) da—
cofaizeey) [ ool rida) +

1 N, N, N, ]Ga 82rk 827'1
4_]; Z Z Z Z (80%18051'2 aai3aai4

i1=114o=143=1144=1

(/ [0, daviydaizda, | p(a, ) da—

)
af

cov(ay, aiy) / [0, 0, ] p(a, m)da—
De
cov(a,, ay) /D [davi, 0, ] pla, r)da+

cov(ail,ai2)cov(ai3,ai4)/ p(a,’r)da).

(a3

Evaluating the integrals and collapsing the summation symbols for readability:

E([ry, — E(r)][r — E(n)]) =

N,

S Org Ory
Z Acvi. Oavs cov(aiy , iy) +
i1,i2=1 Ay OQ%; | o0

N,
N N —
2 /J/l’171 ai17ai27ai3
2i17i2,i3=1 aail aai?aai?: 60‘1'1 6041'20041'3 ol

1 g‘j‘: 9%ry, 0%r
4 3ai1 80@2 8ai3 80[1‘4

11,82,13,84=1

X

af

(11,111 (v, Qg s iy, @) — cov(auy, vy )cov (g, vy ))
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where pu11.1(v,, 0y, iy) and g 1.1,1(,, @iy, 0y, vy ) Tepresent the third and fourth order
mixed central moments respectively. Neglecting parameter cross-correlations that are higher
than second-order and are multiplied by second-order derivatives reduces p11,1 (v, , @y, @y ) and
1,1,1,1 (0, 5 @y, Qg @,) to simply third (unnormalized skewness) and fourth (unnormalized kur-
tosis) order central moments ps(c,) and pa(ay,). The computed response variance-covariance

matrix Cp. of element (k,[) is finally given by

ory Oy
C’I‘C = —_ = Cov OZ/L' ,OZIL
( )kl ilgl 3041‘1 8041'2 ( 1 2)
1 Z 87‘k 6 T‘l 57‘1 82rk (04' )
11 ‘ O, 8a (904Zl oo aOMS .
9%ry, 821"1 (1)
4 = 8@2 8a M4 "
N,
1 = asz 82’!‘1
-3 Z Do, ey, Do, Dons, aocov(azl,aw)cov(aw i) (4.8)

11,82,13,i4=1

For convenience, computed response variance-covariance matrix Cy. of diagonal element (k, k)

is given by
N,
2 Org Or
(Croir = E([ri — E(r))?) = Z Do, Do, OCO’U(Oén,aiz)
i1,42=1 «
N or, 021y, (o))
| sl
i1—1 (9041'1 80[221 ab "
a%«k 827"k (o))
8052 8& ao’u4 '
2
N,
1 - 82rk
= : cov(ay, ) (4.9)
4 . | O, Oaiy
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4.1.3 Skewness

Skewness is a measure of the asymmetry of a probability distribution. Referring to Figure
a distribution with a long right tail would have a positive skewness while a distribution with a

long left tail would have a negative skewness. The skewness of a response ry, is

E(fry = E(ro)l’)  _ ps(re)
(B(lr = Blre))]* - palre) /2

Y1(rk) =V Bi(re) = (4.10)

Only the central moment of order 3 need be computed since the denominator was obtained

Figure 4.1: Examples of distributions whose tails are skewed to the left (negative skewness)
and to the right (positive skewness) for a generalized Normal distribution.
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as the response covariance. The result of the full derivation of the third order central moment

may be found in Appendix The final result is reproduced here as

S (P on(anan)
8ai28ai3 2 s

i1=1 11 | i1 in,iz=1
e [ 2 2 N, 2
87‘k ark 3 8 'r‘k a frk
+ Z ((‘90@1) w3 (ay) (_3041‘1> 5 <_8a2 . Z —3%‘280&‘3 cov(ay, y)
’Ll:l L i1 12’23:1
N,
- ory, ork ory,
+ . Z (80éil> <8a¢2) (8ai3 “1’1’1(ai1’ai2’ ais)
i1,i2,i3=1
i1#£i2#13
- N N
3 - Ory ory, a 8
-3 Z (8a¢1) (8%2) cov(aiy, iy) Z (m cov(ag, 0y
[ i1,i2=1 ig,i4=1

3

1 N 827‘k
1l 2 (—aailaai2)00”(ail’ai2) (4.11)

i1,02=1

4.1.4 Kurtosis

Kurtosis is any measure of ”peakedness” of a probability distribution when compared with a
normal distribution. As illustrated in Figure [£.2] more acute peaks are called leptokurtic and
have a kurtosis value greater than 3 while flatter peaks are deemed platykurtic and have a
kurtosis value less than 3. Kurtosis is defined as the fourth central moment divided by the

square of the variance:

E([ry — E(rp)]* r
Balrg) = s = B ’“)]2)2 _ ’“)2. (4.12)
[B(fry — E(ri)]?)]* p2(rx)
A similar measure, the excess kurtosis, is defined as the kurtosis minus three:
Yo(rk) = Ba(rk) — 3. (4.13)
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Figure 4.2: Examples of distributions whose peaks are higher (leptokurtic), equal to (mesokur-

tic) and less than (platykurtic) a standard Gaussian.
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The derivation of the fourth central moment can be found in Appendix [B:2] The final result is

reproduced here as

2

2[ N
ore \' 3 (% ~ %ry, o
(8ai1> + ) (3a2 Z (m) cov(ia, i3)

i1 1 1 12’13:1
N,
37%) %ry, a ( 9%r, )
-3 —F | cov(ay,,
(80lil <8Oé7?1 iQ’@Z:,,:]_ aai26ai3 ( 12 23)
S or or or or
k k L .
+ Qi Qi Qi O
il,iZﬂ;ﬂA:l (aah) (aai2) (aai?,) (8041'4) Nl,l,l,l( Ty Fhes s Z4)
i175125£i37éi4
2
& N,
) _(9rk 3 _aQTk a %7y, .
+ Z p3(o,) (3%1) 2 <8a2 Z M cov(ig, i3)
i1=1 o W
N,
ory, \* : 0?ry,
(8@11) . Z (80{12 8ai3 CO,U(?’Qa 7’3)
12,i3=1
2
. N,
3| e (ark>(ark) o ( o, )
2 cov(aiy, i) ——— | cov(ay, ayy)
2 il,zza:ﬂ dai,y dai, e i3,7,Z4=1 o, 0, i3y Qliy
4
N,
3 < 827% )
16 ———— | cov(iy,iz)| . 4.14
16 i1,z‘22:1 (aailaaiQ (1 2) ( )

4.2 Higher-Order Computed Response Moments: Applications

4.2.1 Computational Framework

All of the derivatives given in section are evaluated at nominal parameter values a”. One

quantity in particular, the mixed second-order response derivatives, denoted here as

2 N, 2 0
p = . 0 Tk COU(O(' o )_ Ea 37"k—((x)p 0O (4 15)
7,112 — 8@118()[12 119 12 L 80[116 iz 2112¥ 11 Y12
i1,i2=1 i1,i0=1

83

www.manharaa.com



appears multiple times in expressions for E(ry), cov(rg,r;), var(rg), ps(ry) and pg(rg). For
reference p;, i, is the correlation between parameters a;, and «;, while o;, and and o;,, denote
the standard deviations of the respective parameters. To fully evaluate these derivatives would
require O (N2) forward model computations for each response ri(a”) [18].

In the limiting case where all input parameters are completely correlated, p;;, = 1, the
quantity qx(pi,;i, = 1) may be computed very efficiently by considering the column vector of
standard deviations
)T

o =(01,02,...,0N,)" ,

and by acknowledging that the Hessian-vector product V2r;(a’)e can be quantified most
efficiently by using two computations of the gradients V,(ry), as follows:

Vo [r1(@” +bo)] =V, [r(a?)]

; ck=1,...,N,, (4.16)

where b is some small scalar quantity. The vector, yi(a®), may be approximated utilizing only
two adjoint model computations per response instead of the O (N 2) runs using only forward

model computations. With one more inner product, the quantity gx(p;,i, = 1) is obtained as

a(piis = 1) = o yx(a). (4.17)

For a realistic case where the model parameters a are only partially correlated, it is still
possible to compromise between O (Ng) computations and the limiting fully correlated case.
In fact, this number can be reduced to n, < N, by considering Hessian-vector products of the

same form as Eq. For each response, ri(a), k =1,..., N,, the recommended steps are

i? 8T’k (ao)

(1.) Rank the relative sensitivities S¥.(a’) = b

in decreasing order of absolute mag-
nitudes ’Sfl-(ao)}; this ranking will indicate the most important parameters «; in contri-

bution to response 71 (a’);

(2.) Compute the quantities cf = {Sffi(ao)ari}, where o,; denotes the relative standard de-
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viation of parameter «;; rank the cfi in decreasing order of their absolute magnitudes; cf‘i
can be thought of as the “partial standard deviation of the response r; stemming from
uncertainties in the parameters «;”, and thus quantifies the first order contributions to

var(ry);

k. rank the standard deviations

(3.) Based on the rankings of the partial standard deviations ¢},

0; in order of importance in contribution to var(ry), thus constructing the vector sequence
of (o1,09,...,0n,), where oy, denotes a user-defined cutoff value that corresponds to a

negligible (from the user’s perspective) contribution to var(rg);

(4.) For each of the selected standard deviations in the sequence (o1,09,...,0n, ), construct
the n,-dimensional column vectors o = (01,0,...,0),..., o = (0,...,04,...,0),...,
on, = (0,...,0n,), and use each of these, in turn, in conjunction with one adjoint model
computation, to obtain the m,-dimensional vector t¥ = (t’fi, e ,tffa)T defined as

] ) _ 2. (ad 2. (ad T
o= (bt = (Dmsled) o Orkled) (4.18)
o Oap 0oy O, 00
Vo [re(a® 4 boy)] — Vg [ri(a
= Vrp(a¥)o; = 2 [l Zz} a [ril )], kE=1,...,nq;
(5.) Foreachi=1,...,n,, multiply the first component, t§?, of the vector t¥ = (¥ ... ,t’ffa)T

obtained in Eq. by the correlation coefficient p;1, the second component of this
vector by the correlation coefficient p;s, etc., until the last component tffa, which is to be

multiplied by p;n,,, in order to construct the sequence of vectors

: : T 0%y, (a) 0%ry,(a) T
k k k k T .
(tlzpﬂ) .. atnzapina) - < 60[18(12 OiPily -y 80[naaai Uipina) y 1= 17 oy Ny

(4.19)

(6.) Sum the corresponding components of the vectors in Eq. to construct the column
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vector

62 Mo 32 0 T
(Z t1 Pil, - - Ztnapzna) (Z az;]iaal TiPily -, Zl ﬁ(gazaipina> ;

- (4.20)

(7.) Form the inner product of the above vector with the row vector (o1, 09, ...,0n,) to obtain

the sum of the retained first order contributions to var(ry), namely:

T n
N Prp(a?)
(0’1,0’2,...,0‘77‘0‘ (Ztl p117" Zt’napzna) = Z mplllgazlazg (421)

11,62=1

2 of
Thus, the sum » % _, gark—éa) Piyia iy Oy , Which comprises the major first order contribu-
1 (3]

tions to the variance var(ry) can be computed most efficiently by needing only n, < N, adjoint
model computations, as opposed to at least N2 runs if only forward model computations were
utilized.

Lastly, the second-order mixed-derivatives %ﬂf of the response r; can be computed by
1 ]

dividing each of the components of " = (t’fi, . ,t’ffa)T through by o; as follows:
thi ki \ 7T 02ry(a?) 92y (a®)\ "
e P mLi A L R T (4.22)
o; o; Oo10ay 0oy, 0a;

To iterate, the computational framework is a restatement of Cacuci [9]. The following results
section illustrate the exercise of this framework on representative nuclear benchmark problems;
see Chapter
4.2.2 Results

4.2.2.1 Partial Standard Deviations and Sensitivities

Forward and adjoint homogeneous runs at nominal parameter values were completed for the
Godiva and Jezebel benchmarks. All cases were run with SCALE ’s ENDF/BVIIL.0 44 group

neutron library on a (x,y, z) mesh of (10,10,10) for a symmetric octant of the sphere. The
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inner-iteration tolerance was set to le-11 while the outer iteration lo-norm tolerance for the flux
and eigenvalue were set to le-10. For both experiments, four inhomogeneous adjoint runs were

completed to compute the first order sensitivities, S¥, defined as

_ a? ory. (ao) ‘

iji_r— 5 ck=1,...,4,i=1,..., Ny, (4.23)
k )
for the responses
(o }Vp2377¢> foit, (05239, 8) foi
r(Np-237) = """ p(Pu-239) = 7.
(0725, 0) foi (@22, 6) foi
U233 U238
r(U-233) = —< 2 0) r (U-238) = i ’¢>f°” (4.24)

(0235, 9) oir” (o ?235, ) foil

where the inner product space is defined over all energy and volume AV in the domain

(a,b)foilz/ / ab dEAV.
AV JO

The “partial standard deviation of the response r; stemming from uncertainties in the param-

2

eters «;” was computed as

{Sko—m}; k=1,...,4, i=1,...,Na, (4.25)

where o,; represents the relative standard deviation of the i-th input parameter. All of the CZ’
for a response k were ranked in absolute magnitude. Each corresponded to a particular isotope,
reaction type and energy group for a particular material zone within the problem setup; see
section 2411

Figure [4.3|shows all non-zero partial standard deviations for both Godiva and Jezebel. Each
line represents a different response ranked from largest in magnitude to smallest. Figure [£.4]
takes a closer look at the same data with a cutoff value of 1.0E — 4.

As evident from Figure for both Godiva and Jezebel, Uranium-238 and Neptunium-237
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Godiva and Jezebel Partial Standard Deviation Rankings of Fission Rate Responses
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Figure 4.3: Combined plot of the absolute value of the partial standard deviations for both the
Godiva and Jezebel Benchmarks.
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Godiva and Jezebel Partial Standard Deviation
Rankings of Fission Rate Responses (Zoom)
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Figure 4.4: Combined plot of the absolute value of the partial standard deviations for both
the Godiva and Jezebel Benchmarks. The plot has been focused on the largest contributing
members above 1.0F — 4.
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responses maintain a higher partial standard deviation from the parameters than the Uranium-
233 and Plutonium-239 responses until at least a value of 1.0E — 8. To further expound on the
partial standard deviations for each response, the tables below contain cfi values specifically for

the top five parameter contributions for both the Godiva and Jezebel experiments.

Table 4.1: Godiva cfi rankings.

Rank | T(Np237) | T(Pu2sp)
ID Value 1D Value
1 23INplll  8.98074860e-03 || 239Pullll - 1.21838694e-03
2 23TNplL - 6.40012073e-03 || 233Ufl - _1.06314222¢-03
3 25TNplll | 3.91591596e-03 || 235Ul _8.98513677e-04
4 2aunel -3.60836359¢-03 || 239Puldil  8.84983144e-04
5 #INDfaion  3-52700603¢-03 || 235Utel -8.64052569e-04

Table 4.2: Godiva ¢ rankings (cont.).

Rank H T(U233) H T(U238)
1D Value ID Value
1 UL . 2.38927158e-03 || 29Ul _4.26702153€-03
2 MRURL,  1.98826542e-03 || 233Ul 3.93382674e-03
3 2R, 1.54844546e-03 || Z{UMel - 3.69938090e-03
4 2oURL . -1.06314222¢-03 || #35UMel -3.29353255¢-03
5 23URL L 1.03040740e-03 || 235Ul -3.24708777¢-03

Tables [4.1] and [4.2] represent the top five contributors for all four responses for the Godiva
experiment. Tables [4.3] and [4.4] represent the top five contributors for all four responses for the

Jezebel experiment.

To compliment the CZ‘ values, Tables and list the first and second-order
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Table 4.3: Jezebel cﬁ- rankings.

Rank || T(Np28T) I T(Pu239)
ID Value 1D Value
1 SINpfL,,  7.33315223e-03 || %JPule  -1.54054310e-03
2 2puel -6.55072408¢-03 || ZJPulcll - 1.05471603¢-03
3 25TNplll - 5.81786651e-03 || 235Ul .9.32122096e-04
4 23TNplll  4.25585526e-03 || 239Pullil - 8.52699649¢-04
5 #5Puyel -3.91120319¢-03 || Z7Pup’s) -7.73169360e-04
Table 4.4: Jezebel ck, rankings (cont.).
Rank H T(U233) H T(U238)
ID Value 1D Value
1 2B3UPL L 2.10685867¢-03 || **3Pul'e  -6.81102811e-03
2 2BUIL - 1.64037198e-03 || JPultel  -5.73917132¢-03
3 23Ukl | 1.51879057e-03 || %IPuftel  -4.89170810e-03
4 23Ul 1.15678754e-03 || 2*jPult®!  -4.50779250e-03
5 23Ukl | 1.07899369e-03 || Z5gPultel  -4.47782959-03

relative sensitivity values for the top five parameters based on the rankings of cf. for the Godiva

experiment. Tables [4.10] [£.17] and [4.12] list the first and second-order relative sensitivity

values for the top five parameters based on the rankings of cf; for the Jezebel experiment.
In each table are identifications that resemble Z;Ag .“A” represents the periodic element, “b”
is the particular isotopic number of element “A”, “¢” is the energy group number, “d” is the

physical location of the parameter and “e” specifies the reaction type in question.
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Table 4.5: Godiva 7(gr233) first and second-order sensitivities.

st

Sonsitiiivies | D || U HURL.,  URL,  URL,  WUBL,,
2.340e-01 23yl 1.419e-08  -3.853e-15 -3.317e-15 -5.101e-02  0.000e+-00
1.925¢-01 2yl -3.431e-15  6.681e-07  0.000e+00 -4.197e-02  0.000e+00
1.519e-01 233yfoil, -3.432e-15  -3.856e-15 -4.594e-07 -3.313e-02  1.703e-15
-2.184e-01 23syfoil, -5.113e-02  -4.206e-02 -3.318¢-02  9.533e-02  -2.211e-02
1.012e-01 233yfoil. -3.434e-15  -3.858¢-15  0.000e+00 -2.209e-02  2.924e-07

Table 4.6: Godiva r(gr23g) first and second-order sensitivities.

Si:si(i?ixx‘gi?il;s Paré[r];c)leter 238U§1e1 23§U§wl 2§8U£B’c;l 285 fuel Qi’)gUilel
-1.654e-01 235U fuel 5.670e-02  2.326e-03  -2.559e-03  1.151e-02  3.178e-02
1.254e-01 233U tuel 2.421e-03  -3.610e-02 1.017e-03 -4.531e-02  1.648e-03
1.450e-02 25Ul -2.467e-03  9.685e-04 -1.619e-03 -1.665e-04 4.128¢-03
-5.112¢-02 2830l 1.115e-02  -4.435e-02 -1.668e-04 2.147e-02  6.255e-03
-9.374e-02 Qingﬁyel 3.170e-02  1.679e-03  4.182¢-03  6.458e-03  1.773e-02
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Table 4.7: Godiva r(npa3r) first and second-order sensitivities.

15t Order Parameter ; ; ; ;

Sensitivities D 2357)Np1£iosslion 235Np£iosslion 23gl\Ipiffiosslion 238U£1urell’ 23gl\Iprfiosslion
1.948e-01 23TNphall -2.444e-07  0.000e+00  0.000e+00 -2.519e-02  0.000e+00
2.120e-01 23TNploil. 0.000e+00  5.578¢-07  0.000e+00 -5.094e-03  2.427e-15
1.469e-01 23TNplil. 0.000e+00  0.000e+00 -4.375e-07 -3.485e-03  2.429e-15

-4.165e-02 Ul -2.521e-02  -5.103e-03  -3.488¢-03  1.210e-02  -3.190e-03
1.368¢-01 23TNploil. 2.857e-15  0.000e+00 0.000e+00 -3.188e-03  2.833e-07

Table 4.8: Godiva 7(py239) first and second-order sensitivities.
15t Order Parameter ; . : . -

Sensitivities D 2?)g]‘:)ufioslslion 233U£iosl;ion 2:158U1f:ioslgion 232Puifioslslion zggUflljgl’
2.239e-01 289pyfeil, -4.822¢-08  -4.880e-02 -4.106e-02  0.000e+00 -2.895e-02
-2.184e-01 23ufoil, -4.891e-02  9.533e-02  8.020e-02 -3.560e-02  3.042e-02
-1.838e-01 238yl -4.115e-02  8.022e-02  6.749¢-02  -2.995¢-02  -3.319e-02
1.630e-01 239pufoll. -3.283e-15  -3.554e-02 -2.990e-02 -1.934e-07 -3.919e-03
-9.935¢-03 235yfuel -2.897e-02  3.043e-02  -3.321e-02 -3.923e-03  2.752e-03
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Table 4.9: Jezebel 7 (y233) first and second-order sensitivities.

www.manaraa.com

15t Order Parameter . : . . .
Sensitivities 1D 233Uffioslslion 2i)glJ{fioslslion 23gu’fﬁoslslion 23§Ufioslslion 23gljfﬁoslslion
2.064e-01 2yl -3.268¢-07 -1.938¢-15  1.669e-15  -3.106e-15 -1.712e-15
1.587e-01 2yl 0.000e+00 -6.024e-07  0.000e+00 -3.108e-15 -1.713e-15
1.490e-01 23yl 0.000e+00 0.000e+00 -4.508¢-07 0.000e+00 -1.713e-15
1.133e-01 23yl 0.000e+00 -1.940e-15 0.000e+00 1.382e-07  0.000e+00
1.060e-01 23yl 0.000e+00 -1.940e-15 1.670e-15  0.000e+00  3.062e-07
Table 4.10: Jezebel r(y23s) first and second-order sensitivities.
15t Order Parameter . . ) )
Sensitivities D PEPu PGP PP PP P
-3.052e-02 #gpulrel 5.674e-03  1.025e-04  3.302e-04  6.589¢-03  4.783e-04
-1.767e-02 2opulrel 1.090e-04  3.104e-03  5.569e-05 -7.129e-03  7.891e-05
-2.497¢-02 29pulrel 3.324e-04  5.247¢-05  5.250e-03  5.343¢-03  -7.069e-05
-1.490e-01 25Puliel 6.855e-03  -7.276e-03  5.556e-03  4.676e-02  5.291e-03
-2.424e-02 2opulel 4.792e-04  7.444e-05 -7.187e-05 5.083e-03  4.627e-03
94



Table 4.11: Jezebel r(np2sr) first and second-order sensitivities.

15t Order

Parameter

Sensitiitios | b | TENeRle TPl PIN, Noi,,  PgPul
1.591e-01 23TNplal -2.897e-07  -6.466e-03 -2.158e-15  -2.263e-15 ~ 1.014e-02
-2.015e-02 25opulel -6.450e-03  2.285e-03  -3.441e-03  -2.903e-03  -9.650e-04
1.926e-01 23TNpll. 0.000e+00 -3.428¢-03  5.071e-07  0.000e+00 -1.668e-02
1.650e-01 23TNplil. 0.000e+00 -2.893e-03 -2.158¢-15  3.416e-07  -2.285¢-03
-1.504e-02 2pulel 1.014e-02  -9.655¢-04 -1.667e-02 -2.291e-03  2.561e-03

Table 4.12: Jezebel r(py239) first and second-order sensitivities.

15t Order Parameter . . . . .
Sensitivities | 1D B W
-4.738e-03 2opuliel 4.680e-04 -7.859¢-03  8.667e-03 -2.805e-03 -1.809e-04
1.939e-01 289pyfoil, -7.878¢-03 -1.661e-07 -3.706e-02 0.000e+00 -1.354e-03
-1.915e-01 230Ukl 8.686e-03 -3.713e-02  7.326e-02 -3.007e-02  1.734e-03
1.570e-01 239pufoll -2.795e-03  -3.244e-15  -3.003e-02 -1.863e-07 -1.078e-03
-2.069¢-03 2opulel -1.812e-04 -1.361e-03  1.740e-03  -1.082e-03  6.926e-05
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The differencing parameter “b” from Eq. was chosen such that the multiplication with
the corresponding standard deviation resulted in a 1% perturbation of the representative cross
section () that it was added to. As a result, asymmetries on the order of O(b) may be present
in the Hessian matrices. If b is chosen too small, the effect of the perturbation of a parameter
within the code will not produce a measurable difference from the nominal case at al. If a
perturbation is chosen too large, nonlinear effects may be present in the perturbation and would
bias the derivative result.

If desired, a central difference (or higher-order) scheme may be employed at the cost of
further adjoint runs to obtain symmetries that are on the order of O(b?) (or better). Even with
additional adjoint runs for higher precision Hessians, the cost of the overall computation still
remains at O(ng).

Tables through in general, indicate that the second-order sensitivities are signifi-
cantly smaller than the corresponding first-order sensitivities. Despite there being a few cases
where second-order derivatives are of the same order of magnitude as the first-order deriva-
tives, quite a few are either several orders of magnitude smaller or zero to the precision of the
computation.

The magnitude of the second-order derivatives indicates that the responses of each system
behave nearly linearly as functions of their respective cross sections. For the experiments,

Godiva and Jezebel, this behavior is to be expected.

4.2.2.2 Higher-Order Moments

With first- and second-order derivatives available, it is possible to utilize the equations in section
to compute the expectation value, covariance, skewness and kurtosis for each response.
The user-defined cutoff to determine how many second-order derivatives to compute for each
response was set based on the partial standard deviations of that response. Tables through
give the cfi value for the top ranked parameter. Taking this value, for each response, and

dropping it an order of magnitude set the chosen cfi cutoff value. From this, Figure may
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be used to determine the number of adjoint runs to execute based on where the cfi chosen
cutoff value intersects the x-axis. One additional inhomogeneous adjoint run corresponds to
one additional second-order derivative term computed as according to Eq. Table
summarizes the necessary number of adjoint runs per response to incorporate all parameters at

or above a particular cﬁ- cutoff value; in other words: values of n,,.

Table 4.13: Number (n,) of second-order derivatives (and hence, in-
homogeneous adjoint runs) to complete for both experiments Godiva
and Jezebel as a function of response such that partial standard de-
viation rankings within an order of magnitude of the top value are
incorporated into the higher-order moment results.

Mg H T(U233) T(U238) T(Np237) T(Pu239)
Godiva 15 41 18 32
Jezebel 18 27 23 31

Based on these set numbers of inhomogeneous adjoint runs, values are reported for the
computed response, expectation value, relative covariances, skewness and excess kurtosis for
each response for both Godiva and Jezebel. Tables and contains specifically the
computed responses and expectation values. Tables and contain the first-order relative
response covariance matrices for each system, i.e. “the sandwich equation”. Tables [£.17] and
[4.19] contain the second-order relative response covariance matrices for each system, i.e. “the

sandwich equation” plus higher-order nonlinear terms from Eq.

Table 4.14: Computed responses and expectation values for each response in
Godiva given the number of computed inhomogeneous adjoints in Table

Godiva H T(U233) T(U238) T(Np237)  T(Pu239)
1.56145688 0.17132921 0.90951271 1.39511123
1.56147871 0.17134588 0.90946001 1.39506648

Computed Response
Expectation Value
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Table 4.15: Computed responses and expectation values for each response in
Jezebel given the number of computed inhomogeneous adjoints in Table

Jezebel H T(U233) T(Np237)  T(Pu239)

1.55237282 0.20331751 0.97610488 1.41226606
1.55235515 0.20345702 0.97634541 1.41229669

T'(U238)

Computed Response

Expectation Value

Table 4.16: First-order computed response relative covariance matrix for Godiva.

Godiva H T(U233) T(U238) T'(Np237) T (Pu239)

T(U233) 1.13119870e-04  -3.30279777e-06 ~ 9.29934691e-06  1.56621806e-05
T(U238) -3.30279777e-06  7.52809808e-04  3.45137120e-04  8.14593187e-05
T(Np237) 9.20934691e-06  3.45137120e-04  5.18198500e-03  5.45937331e-05
T (Pu239) 1.56621806e-05  8.14593187e-05  5.45937331e-05  4.78079800e-05

Table 4.17: second-order computed response relative covariance matrix for Godiva.

Godiva H T(U233) T(U238) T(Np23T7) T (Pu239)

T(U233) 1.13119681e-04  -3.30415722e-06  9.30016120e-06  1.56626366e-05
T(U238) -3.30415722e-06  7.52857179e¢-04  3.45179337e-04  8.14728750e-05
T(Np237) 9.30016120e-06 ~ 3.45179337e-04  5.18201713e-03  5.46018543¢-05
T(Pu239) 1.56626366e-05  8.14728750e-05  5.46018543e-05  4.78103226e-05

Tables and provide skewness and excess kurtosis information on Godiva and Jezebel

respectively. Recall that both skewness and excess kurtosis are centered about zero for a normal

distribution.

98

www.manaraa.com



Table 4.18: First-order computed response relative covariance matrix for Jezebel.

Jezebel H T(U233) T(U238) T'(Np237) T (Pu239)

T(U233) 1.11889583e-04  -4.05258915e-05  -8.70107226e-06  1.19807031e-05
T(U238) -4.05258915e-05  1.51689841e-03  7.23297573e-04  1.57050707e-04
T(Np237) -8.70107226e-06  7.23297573e-04  5.53392779¢-03  9.95219417e-05
T (Pu239) 1.19807031e-05  1.57050707e-04  9.95219417e-05  5.78114151e-05

Table 4.19: second-order computed response relative covariance matrix for Jezebel.

Jezebel H T(U233) T(U238) T'(Np23T7) T (Pu239)

T(U233) 1.11889893e-04  -4.05264964e-05  -8.70235351e-06  1.19802473e-05
T(U238) -4.05264964e-05  1.51670798¢-03  7.23279197e-04  1.57064261e-04
T(Np237) -8.70235351e-06  7.23279197e-04  5.53395491e-03  9.95333110e-05
T (Pu239) 1.19802473e-05  1.57064261e-04  9.95333110e-05  5.78141650e-05

Table 4.20: Skewness and excess kurtosis values for each response in Godiva given the number of
computed inhomogeneous adjoints in Table

Godiva H T(U233) T(U238) T(Np237) T (Pu239)
Skewness -3.76823853e-03  -9.91657776e-03  2.42068329¢-03  1.68782435e-02
Excess Kurtosis || 1.03025103e-05  7.17401534e-05  3.87752934¢-06  1.26412266e-04

Table 4.21: Skewness and excess kurtosis values for each response in Jezebel given the number
of computed inhomogeneous adjoints in Table

Jezebel H T(U233) T(U238) T(Np237) T (Pu239)

3.32842837¢-03  -4.20089068¢-02  -9.63178691e-03  -5.98445813e-03
6.90929473e-06 1.65952748e-03 6.37390642e-05 3.16780628e-05

Skewness

Excess Kurtosis
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Next, information about the evolution of the expectation values, variances, skewnesses and
kurtoses as n,, is increased from 0 to the values in Table and beyond for each response
is displayed graphically. Figure and Figure display the evolution of the normalized
expectation value (which is Eq. divided by the computed response) as more information
is added via additional second-order derivatives. Figure [1.7] and Figure show the change
in variance (which is Eq. divided by (Cre)ys) as additional second-order derivatives are
appended. Figure [£.9) and Figure [£.10] display the evolution of the skewness for each response
as more information is added via additional second-order derivatives. Finally, Figure and
Figure display the evolution of the excess kurtosis for each response as more information
is added via additional second-order derivatives.

All figures confirm the relative linearity of both Godiva and Jezebel benchmark models. For
normalized expectation value and normalized variance, there is little departure from 1.0; the
value associated with a linear model. Where there was lower-order information for expectation
value and variance, there was none for skewness and excess kurtosis. Each addition of a second-
order derivative gives new information about these shape factors that help quantify the non-
Gaussian properties of the probability distribution. While non-zero, the skewness and excess

kurtosis also confirm little departure from a Gaussian.
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Godiva Normalized Expectation Value as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239)
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Figure 4.5: Normalized expectation values for Godiva as additional second-order derivative
k

information is added by incrementing n, as indicated by the parameter rankings via ¢
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Jezebel Normalized Expectation Value as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239) \
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Figure 4.6: Normalized expectation values for Jezebel as additional second-order derivative
k

information is added by incrementing n, as indicated by the parameter rankings via ¢
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Godiva Normalized Variance as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239)
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Figure 4.7: Normalized variances for Godiva as additional second-order derivative information
k

is added by incrementing n, as indicated by the parameter rankings via ¢
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Jezebel Normalized Variance as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239)
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Figure 4.8: Normalized variances for Jezebel as additional second-order derivative information
k

is added by incrementing n, as indicated by the parameter rankings via ¢

104

www.manharaa.com




Godiva Skewness as a Function of
Additional Second-Order Derivative Terms

W r(U-233) + r(U-238) ¥ r(Np-237) 4 r(Pu-239)
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Figure 4.9: Skewness values for Godiva as additional second-order derivative information is
added by incrementing n, as indicated by the parameter rankings via c¥
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Jezebel Skewness as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239)

2.00E-02

1.00E-02

(0]
(2]
c
o
o
wn
[0]
o
5
#  -2.00E-02 +
(0]
S
g %
% -3.00E-02
N
¢ -
-4.00E-02 %, % "y,

oo oy

olev NMM*‘T”*W
-5.00E-02 w
0

20 40 60 80 100 120 140 160 180 200

Number of Additional Second-Order Derivative Terms

Figure 4.10: Skewness values for Jezebel as additional second-order derivative information is
k

added by incrementing n, as indicated by the parameter rankings via c
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Godiva Excess Kurtosis as a Function of
Additional Second-Order Derivative Terms

m r(U-233) * r(U-238) v r(Np-237) 4 r(Pu-239)
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Figure 4.11: Excess kurtosis values for Godiva as additional second-order derivative information
k

is added by incrementing n, as indicated by the parameter rankings via ¢
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Jezebel Excess Kurtosis as a Function of
Additional Second-Order Derivative Terms
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Figure 4.12: Excess kurtosis values for Jezebel as additional second-order derivative information
is added by incrementing n, as indicated by the parameter rankings via c¥
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Chapter 5

Conclusions & Outlook

This work has presented several advances in the field of data assimilation and predictive model
calibration, and has illustrated the significance and applicability of these advances by using the
experimental results from the Lady Godiva, Jezebel and LCT critical assemblies, to calibrate
cross-sections within the neutron transport code Denovo to obtain best-estimate predictions for
these reactor physics problems. An important aspect of the novel contributions presented in
this work is the development of highly parallel and scalable algorithms for application of data
adjustment and assimilation to large (peta)- scale systems, thereby significantly extending the
practical feasibility and applicability of predictive model calibration activities. As shown in
Chapter [2, these new algorithms also include mathematical verification procedures for identi-
fying non-physical covariance matrices, as well as quantifying the consistency of computational
and experimental information. Very importantly, the new consistency verification criteria intro-
duced in Chapter [2| have identified unphysical deficiencies in the 44-group evaluated covariance
files of the widely used ORNL’s SCALE code package.

The significant impact of the above algorithmic advances has been demonstrated in Chapter
by using the neutron transport code Denovo, a highly parallel (over ten thousand processors)
code that runs on ORNL’s leadership-class computer Jaguar. Denovo is interfaced through

the software module “Lemon” to the module “best_pred” to perform efficiently first-order data
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assimilation and calibration of model parameters. Both lemon and best-pred were developed
as part of this work, and have been demonstrated to be scalable from a desktop PC to the 2.3
peta-FLOP Jaguar. The experiments used for data assimilation were: Lady Godiva (a bare
sphere containing 94 wt% 23°U ), Jezebel (a critical assembly containing 2**Pu ), and the “LEU-
COMP- THERM-008” (shorthand: LCT) assembly (which models a 3 x 3 array of Pressurized
Water Reactor fuel assemblies comprising 4808 fuel rods and 153 water holes). Noteworthy new
results in this dissertation are also obtained by using the remarkable efficiency of the “adjoint
sensitivity analysis procedure for operator-type responses”, originally developed by Cacuci in
1981, to compute the sensitivities (derivatives) of the spatially dependent (as opposed to point-
values of ) neutron fluxes to cross sections for Lady Godiva. For all of these illustrative examples,
the newly developed algorithms have performed robustly, very efficiently and accurately, for
computing response sensitivities, propagating cross section covariances to obtain uncertainties in
computed responses, combining computational with experimental uncertainties within the data
assimilation procedure and, finally, obtaining best-estimate predictions with a correspondingly
calibrated Denovo.

Chapter [4]of the dissertation presents expressions for computing the skewness and kurtosis of
response distributions, to be used for quantifying non-Gaussian features of computed response
distributions. Evaluation of these expressions requires the prior computation of the second-order
mixed-derivatives of responses with respect to parameters. These second-order derivatives are
computationally demanding to compute for large-scale problems, since, for IN, parameters,
the current computational procedures require O (Ng) large-scale computations for each scalar
response. Using a novel method based on the work of Cacuci [9], the second-order mixed deriva-
tives of responses to parameters are computed in O(IN,). The first- and second-order response
derivatives are computed explicitly for Godiva and Jezebel for reaction-rate responses. Most of
the second-order derivatives are at least one order of magnitude smaller than the corresponding
first-order ones, confirming the expectation that the flux behaves almost linearly as a function of

most cross sections. For each response, the number of computations of second-order derivatives
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was limited to the most significant parameters (cross sections) by using an indicator comprising,
for each parameter, the product of the first-order sensitivity and the corresponding standard
deviation. This indicator actually quantifies the partial contribution made by each parameter
to the leading (i.e., first-order) term of the respective responses variance. By ranking these
indicators in descending order of their absolute magnitude, the number of computations of the
second-order derivatives was drastically reduced without affecting significantly the contributions
involving second-order derivatives to the responses expectation values, variances, skewness, and
kurtosis. These novel results are depicted graphically in Chapter 4, and they show that, also
as expected, if the cross-sections are considered to be Normally distributed, their rather small
uncertainties and small second-order derivatives cause the reaction-rate responses to be almost
Normally-distributed, as would be expected in view of the central limit theorem. Only the
238U reaction-rate response displays a small asymmetry (negative skewness) and peaked-ness
(slightly positive excess kurtosis).

Although the work presented in this dissertation significantly advances the current state-of-
the-art methods and algorithms for predictive model calibration, it nevertheless represents only
a first step within a program to develop a new, fourth-order data assimilation and predictive
model calibration procedure, which would incorporate the results obtained in this work. Im-
mediate extensions of the work presented in this dissertation would be to provide a Chebyshev-
basis, in addition to the Fourier cosine basis, for computing sensitivities of operator-type re-
sponses to parameters. Using Chebyshev polynomials would further reduce the number of
required adjoint computations for a pre-determined accuracy criterion, since these polynomials
satisfy a minimax principle and can be fitted exactly at points deemed especially important by
the user. Furthermore, we plan to analyze several multi-physics benchmarks, going beyond the
relatively simple reactor physics benchmarks that served as test-beds for the new algorithms
presented in this work. Defining and developing best-practices procedures for handling large
sets of covariance matrices for data assimilation would also be an important step forward, since

such procedures are lacking at this time.
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The results obtained in this dissertation represent first-of-a-kind computations of response
skewness and kurtosis, thus enabling a quantitative assessment of non-Gaussian features of
predicted responses (results). In particular, the illustrative results presented for the Godiva
and Jezebel benchmarks show that the response skewness and kurtosis are relatively small,
thus quantitatively confirming the intuitive feeling (based on the presumed applicability of
the central limit theorem) that simple reactor physics problems involving small cross section
uncertainties tend to produce reaction-rate responses that are nearly Normally distributed.
Finally, yet importantly, the algorithmic advances and results presented in this work represent
a fundamental first step towards developing a high-order predictive model calibration procedure
capable of Bayesian combination of non-Gaussian model parameter features with non-Gaussian
experimental distributions. Such developments are currently underway, and their successful
completion is expected to enable more accurate predictions of “best-estimate results” including
corresponding predicted non-Gaussian features, for large (peta- and exa-) scale systems.

A particularly important open issue is the estimation of the validation domain of the physics
underlying the models of interest, which requires estimation of contours of constant uncertainty
in the high-dimensional space that characterizes the application of interest. In practice, this in-
volves the identification of areas where the predictive estimation of uncertainty meets specified
requirements for the performance, reliability, or safety of the system of interest. Developing
predictive experimentally validated “best-estimate” numerical models is particularly important
for designing new technologies and facilities based on novel processes, while striving to avoid,
as much as possible, the costly and lengthy procedures of building representative mock-up
experiments which might confirm —but would not necessarily explain— the predictions of sim-
ulation tools. For example, assessing and predicting the performance of nuclear reactor fuels
and materials under irradiation currently relies on very expensive and time-consuming con-
firmatory mockup experiments (e.g., multiyear irradiations); the corresponding computational
predictive tools are crude, so improvements in this regard have very high potential payoff. A

similar situation exists in reactor safety analyses, where validation has been restricted to either
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mockup or component-level experimental comparison, with little predictive capability. The
specific applications of the new mathematical methodologies to massively parallel multi-scale
reactor physics modules will readily benefit both the fields of radiation imaging and therapy,

as well as the simulation-based design, assessment, and licensing of nuclear energy systems.
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Appendix A

KENO Input Specifications

A.1 Godiva

SCALE version 6.1 typical input listing:

=mavric parm=(nodose, forinput)
GODIVA V7-27 20 20 20

v7—-27

read comp

U-234 1 0 0.00049184 end
U-235 1 0 0.044994 end

U-238 1 0 0.0024984 end

U-235 2 0 1.0 end
U-238 3 0 1.0 end
U-233 4 0 1.0 end
Np—237 5 0 1.0 end
Pu—239 6 0 1.0 end
Mn—55 7 0 1.0 end
Cu—63 8 0 1.0 end
Nb—93 9 0 1.0 end
end comp

read geom

global unit 999

sphere 10 8.7407
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media 1 1 10
boundary 10

end geom

read definitions

gridGeometry 1

xlinear 20 —8.7407 8.7407
ylinear 20 —8.7407 8.7407
zlinear 20 —8.7407 8.7407

end gridGeometry
end definitions
read sources
src 1
strength=100
neutrons
sphere 0.0
end src
end sources
read importanceMap
gridGeometryid=1
mmsubcells=1
mmtolerance=0.1
end importanceMap

end data

end
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A.2 Jezebel

SCALE version 6.1 typical input listing:

=mavric parm=(nodose, forinp)
JEZEBEL V5—-44 20 20 20
vH—44

read comp

pu—239 1 0 0.037047 end
pu—240 1 0 0.0017512 end
pu—241 1 0 0.00011674 end
ga 1 0 0.0013752 end

U-235 2 0 1.0 end
U-238 3 0 1.0 end
U-233 4 0 1.0 end
Np—237 5 0 1.0 end
Pu—239 6 0 1.0 end
end comp
read geom
global unit 999
sphere 10 6.38493
media 1 1 10
boundary 10
end geom
read definitions
gridGeometry 1
xlinear 20 0 6.38493
ylinear 20 0 6.38493
zlinear 20 0 6.38493
end gridGeometry
end definitions
read sources
src 1
strength=100
neutrons
sphere 0

end src

end sources
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read importanceMap
gridGeometryid=1
mmsubcells=1
mmtolerance=0.1

end importanceMap

end data

end
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A.3 LEU-THERM-COMP-008

SCALE version 6.1 typical input listing (computer generated):

=mavric parm=(adjinp)
bw27—-XI2: LEU-COMP-THERM-008 case 2; Core XI, Loading 2; 27—group xsecs
v7T—27

read comp

h 1 0.0 6.6737e—2 end
o 1 0.0 3.3369e—2 end
b—10 1 0.0 1.4821e-5 end
b—11 1 0.0 5.9657e—5 end
u—234 2 0.0 4.5689e—6 end
u—235 2 0.0 5.6868e—4 end
u—238 2 0.0 2.2268e—2 end
o 2 0.0 4.5683e—2 end
b—10 2 0.0 2.6055e—7 end
mg 3 0.0 6.2072e—4 end
al 3 0.0 5.3985e—2 end
si 3 0.0 3.2230e—4 end
ti 3 0.0 4.7263e—5 end
cr 3 0.0 5.8029e—5 end
mn 3 0.0 4.1191e-5 end
fe 3 0.0 1.8910e—4 end
cu 3 0.0 5.9353e—5 end
u—234 4 0.0 4.5689e—6 end
u—235 4 0.0 5.6868e—4 end
u—238 4 0.0 2.2268e—2 end
o 4 0.0 4.5683e—2 end
b—10 4 0.0 2.6055e—7 end
u—234 5 0.0 4.5689e—6 end
u—235 5 0.0 5.6868e—4 end
u—238 5 0.0 2.2268e¢—2 end
o 5 0.0 4.5683e—2 end
b—10 5 0.0 2.6055e—7 end
u—234 6 0.0 4.5689e—6 end
u—235 6 0.0 5.6868e—4 end
u—238 6 0.0 2.2268e¢—2 end
o 6 0.0 4.5683e—2 end
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b—10
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fe

cu

b—10
b—11

cr
mn

fe

cu

end comp
read cell
latticecell
latticecell
centrm data
latticecell
centrm data
latticecell
centrm data
latticecell
centrm data

end cell

13 0.0 4.1191e-5 end
13 0.0 1.8910e—4 end
13 0.0 5.9353e—5 end
14 0.0 6.6737e—2 end
14 0.0 3.3369e—-2 end
14 0.0 1.4821e—-5 end
14 0.0 5.9657e—5 end
15 0.0 6.2072e—4 end
15 0.0 5.3985e—2 end
15 0.0 3.2230e—4 end
15 0.0 4.7263e—5 end
15 0.0 5.8029e—5 end
15 0.0 4.1191e—5 end
15 0.0 1.8910e—4 end
15 0.0 5.9353e—5 end

squarepitch pitch=1.63576 1 fueld=1.02972 2 cladd=1.20599 3 end

squarepitch pitch=1.63576 8 fueld=1.02972 4 cladd=1.20599 9 end

dan2pitch(4)=0.18052 end
squarepitch pitch=1.63576 10
dan2pitch (5)=0.17204 end
squarepitch pitch=1.63576 12
dan2pitch (6)=0.15142 end
squarepitch pitch=1.63576 14

dan2pitch (7)=0.14294 end

read geometry

unit

1

com="fuel rods—unperturbed lattice”

cylinder
media 2
cylinder
media 3

5.148580E-01 1.633240E402

origin 0.000000E+00

1 1

X=

vol= 3.786553E+05

6.029960E-01 1.633240E402

0.000000E400

origin

1 2

X=

-1

y=

y=

centrm
fueld=1.02972 5 cladd=1.20599 11 end
centrm
fueld=1.02972 6 cladd=1.20599 13 end
centrm
fueld=1.02972 7 cladd=1.20599 15 end

centrm

0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
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vol= 1.407400E405

cuboid 3
8.178800E—01 —8.178800E—-01 8.178800E-01
—8.178800E-01 1.633240E+02 0.000000E+00
media 1 1 3 -2 -1
vol= 6.972344E+05
boundary 3
unit 2

com="fuel rods with 1 kitty—cornered water hole”
cylinder 1
5.148580E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 4 1 1
vol= 4.406764E+404
cylinder 2
6.029960E—-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 1.637922E+404

cuboid 3
8.178800E—-01 —8.178800E—-01 8.178800E-01
—8.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 8.114366E+04
boundary 3
unit 3

com="fuel rods with 2 kitty—cornered water holes”
cylinder 1
5.148580E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 5 1
vol= 9.792810E+03
cylinder 2
6.029960E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 3.639827E403

cuboid 3

8.178800E—01 —8.178800E—01 8.178800E-01
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—8.178800E—01 1.633240E+4+02 0.000000E+00
media 1 1 3 -2 -1
vol= 1.803192E+04
boundary 3
unit 4
com="fuel rods with 1 adjacent water hole”
cylinder 1
5.148580E-01 1.633240E402 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 6 1 1
vol= 6.365326E404
cylinder 2
6.029960E-01 1.633240E402 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 2.365887E+04

cuboid 3
8.178800E—-01 —8.178800E—-01 8.178800E-01
—8.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 1.172075E+05
boundary 3
unit 5

com="fuel rods with 1 adjacent and 1 kitty—cornered water hole”
cylinder 1
5.148580E—-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 7 1 1
vol= 1.958562E+404
cylinder 2
6.029960E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 7.279653E+03

cuboid 3
8.178800E—-01 —8.178800E—-01 8.178800E-01
—8.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1

vol= 3.606385E+04
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boundary 3
unit 8

com="water hole”

cuboid 1
8.178800E—-01
—8.178800E-01
media 1 1 1
vol=
boundary 1
unit 14
com="15 x 15 fuel assembly
cuboid 1
2.453640E401
0.000000E+4-00
array 1 1
place 1 1 1
boundary 1
unit 15

com="61 x 8 x 1 driver

cuboid 1
4.979068E+01
—6.443040E4-00
array 2 1
place 1 1 1
boundary 1
unit 16

com="41 x 5 x 1 driver

cuboid 1
3.343308E401
—3.989400E4-00
array 3 1
place 1 1 1
boundary 1
unit 17

com="21 x 5 x 1 driver

cuboid 1
1.707548E+01
—3.989400E4-00
array 4 1

—8.178800E-01
1.633240E+02

6.686219E404

lattice”

0.000000E4-00
1.633240E+02

8.17880E-01

fuel array”

—4.979068E+01
8.166200E+01

—4.90728E+01

fuel array”

—3.343308E+01
8.166200E401

—3.27152E+01

fuel array”

—1.707548E+01
8.166200E+01

8.178800E-01
0.000000E+00

2.453640E4-01
0.000000E4-00

8.17880E-01

6.443040E4-00

—8.166200E+01

—5.72516E+00

3.989400E4-00

—8.166200E+01

—3.27152E+00

3.989400E4-00

—8.166200E+01
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place 1 1 1 —1.63576E401 —3.27152E4+00 —8.16620E+401
boundary 1
unit 18

com="8 x 45 x 1 driver fuel array’

cuboid 1
6.443040E+00 —6.443040E4+00 3.670460E+01
—3.670460E4+01 8.166200E4+01 —8.166200E+01
array 5 1
place 1 1 1 —5.72516E400 —3.598672E4+01 —8.16620E+01
boundary 1
unit 19

com="5 x 41 x 1 driver fuel array’

cuboid 1
3.989400E4+00 —3.989400E400 3.343308E401
—3.343308E+01 8.166200E+01 —8.166200E+01
array 6 1
place 1 1 1 —3.27152E4+00 —3.27152E+01 —8.16620E+401
boundary 1
unit 20

com="5 x 21 x 1 driver fuel array”

cuboid 1
3.989400E+00 —3.989400E+00 1.707548E+01
—1.707548E+01 8.166200E+01 —8.166200E+01
array 7 1
place 1 1 1 —3.27152E4+00 —1.63576E+01 —8.16620E4-01
boundary 1
unit 21

com="fuel rods with right side shaved for hole"
cylinder 1
5.148580E—01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 3.073854E+404
cylinder 2
6.029960E—-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 1.142501E404

cuboid 3
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7.178800E-01 —8.178800E—-01 8.178800E-01
—8.178800E-01 1.633240E+02 0.000000E+00
media 1 1 3 -2 -1
vol= 5.056241E+404
boundary 3
unit 22
com="fuel rods with left side shaved for hole”
cylinder 1
5.148580E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 3.073854E+04
cylinder 2
6.029960E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 1.142501E+04

cuboid 3
8.178800E—01 —7.178800E—01 8.178800E-01
—8.178800E-01 1.633240E+02 0.000000E+00
media 1 1 3 -2 -1
vol= 5.056241E404
boundary 3
unit 23

com="fuel rods with upper side shaved for hole”
cylinder 1
5.148580E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 3.509090E+04
cylinder 2
6.029960E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 1.304271E+04

cuboid 3
8.178800E—-01 —8.178800E—-01 7.178800E-01
—8.178800E-01 1.633240E+02 0.000000E+00
media 1 1 3 -2 -1
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vol= 5.772169E+04
boundary 3
unit 24
com="fuel rods with lower side shaved for hole”
cylinder 1
5.148580E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 3.509090E+04
cylinder 2
6.029960E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 1.304271E+404

cuboid 3
8.178800E—-01 —8.178800E—-01 8.178800E-01
—7.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 5.772169E+404
boundary 3
unit 25

com="fuel rods with right and lower sides shaved for hole”
cylinder 1
5.148580E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 1.632135E+03
cylinder 2
6.029960E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 6.066378E402

cuboid 3
7.178800E—01 —8.178800E—01 8.178800E-01
—7.178800E-01 1.633240E+02 0.000000E+00
media 1 1 3 -2 -1
vol= 2.383738E+03
boundary 3
unit 26
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com="fuel rods with left and lower sides shaved for hole”
cylinder 1
5.148580E-01 1.633240E402 0.000000E400
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 1.632135E+03
cylinder 2
6.029960E-01 1.633240E402 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 6.066378E+402

cuboid 3
8.178800E—01 —7.178800E—01 8.178800E-01
—7.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 2.383738E+03
boundary 3
unit 27

com="fuel rods with right and upper sides shaved for hole”
cylinder 1
5.148580E—-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 2 1 1
vol= 1.632135E+03
cylinder 2
6.029960E-01 1.633240E+02 0.000000E+00
origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 6.066378E+402

cuboid 3
7.178800E—-01 —8.178800E—-01 7.178800E-01
—8.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 2.383738E+03
boundary 3
unit 28

com="fuel rods with left and upper sides shaved for hole”

cylinder 1

5.148580E—-01 1.633240E+02 0.000000E4-00

131

www.manharaa.com




origin x= 0.000000E+00 y= 0.000000E+00

media 2 1 1

vol= 1.632135E+03

cylinder 2
6.029960E—-01

1.633240E+02 0.000000E+00

origin x= 0.000000E+00 y= 0.000000E+00
media 3 1 2 -1
vol= 6.066378E+02
cuboid 3
8.178800E—-01 —7.178800E—01 7.178800E-01
—8.178800E—01 1.633240E+402 0.000000E+00
media 1 1 3 -2 -1
vol= 2.383738E+03
boundary 3
global
unit 999
cuboid 1
3.680460E+01 —3.680460E+01 3.680460E+01
—3.680460E4+01 8.166200E+01 —8.166200E+01
array 8 1

place 1 1 1 —3.68046E+01 —3.68046E+01 —8.16620E4-01

cylinder 2
7.620000E+01

8.166200E+01 —8.166200E+01

origin x= 0.000000E+00 y= 0.000000E+00
media 1 1 2 -1
vol= 8.396215E+405

hole 15 origin x= 0.000000E+00 y= —4.334764E4+01 2z= 0.000000E+00
hole 16 origin x= 0.000000E4+00 y= —5.398008E+01 =z= 0.000000E400
hole 17 origin x= 0.000000E+00 y= —6.215888E+4+01 z= 0.000000E+00
hole 18 origin x= —4.334764E+01 y= 0.000000E4+00 z= 0.000000E+00
hole 19 origin x= —5.398008E+01 y= 0.000000E4+00 z= 0.000000E+00
hole 20 origin x= —6.215888E+4+01 y= 0.000000E+00 =z= 0.000000E+00
hole 15 origin x= 0.000000E4+00 y= 4.334764E+01 z= 0.000000E+00
hole 16 origin x= 0.000000E+00 y= 5.398008E+01 =z= 0.000000E+00
hole 17 origin x= 0.000000E+00 y= 6.215888E+01 =z= 0.000000E+00
hole 18 origin x= 4.334764E+01 y= 0.000000E4+00 z= 0.000000E+00
hole 19 origin x= 5.398008E+01 y= 0.000000E4+00 z= 0.000000E+00
hole 20 origin x= 6.215888E4+01 y= 0.000000E4+00 =z= 0.000000E+00
boundary 2
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end geometry
read array
ara=1 nux=15 nuy=15

11 1 1 1 1 1

11 1 1 2 4 2
1 1 2 4 5 8 4
1 1 4 8 5 4 2
1 2 5 5 3 4 2
1 4 8 4 4 8 4
1 2 4 2 2 4 3
11 1 1 1 1 4
1 2 4 2 2 4 3
1 4 8 4 4 8 4
1 2 5 5 3 4 2
1 1 4 8 5 4 2
1 1 2 4 5 8 4
11 1 1 2 4 2
11 1 1 1 1 1
end fill

ara=2 nux=61 nuy=8

end fill

ara=3 nux=41 nuy=>

end fill

ara=4 nux=21 nuy=>

end fill

ara=5 nux=8 nuy=45

end fill

ara=6 nux=5 nuy=41

end fill

ara=7 nux=5 nuy=21

end fill

ara=8 nux=3 nuy=3

end array

read definitions

gridGeometry 1

xlinear 340
ylinear 340
zlinear 340

end gridGeometry

nuz=1

1 1

e e < B S R S T S =Y

—
N R NN AW R W RN N RN

nuz=1

nuz=1

nuz=1

nuz=1

nuz=1

nuz=1

nuz=1

-85 85
-85 85
—85 85

fill

— R 00 R R 00 A = R 00 R A 00 A

fill

fill

fill

fill

fill

fill

fill

[y

o o ot WA NN E N R W ot ot N

1 1

1 1

4 2

8 4

5 5

4 8

2 4

1 1

2 4

4 8

5 5

8 4

4 2

1 1

1 1
26 59r24
26 39r24
26 19r24
26 6124
26 3r24
26 3r24
f14 end

e I T T T N N R e O O

e

25 22

25

25

25

25

25

22

22

22

22

22

fill
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39r1
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6rl

3rl

3rl

21

21

21

21

21

21

5q61

2q41

2q21

4248

3895

1895

28

28

28

28

28

28

59123

39r23

19r23

6r23

3r23

3r23

27

27

27

27

27

27

www.manharaa.com



location 1
position 0.001 0 O
end location
response 1
specialDose=9029
end response
distribution 1
special="wattSpectrum” parameters 1 3 end
end distribution
end definitions
read sources
src 1
strength=1.0
neutrons
sphere 0.0
edistributionid=1
end src
end sources
read importanceMap
gridGeometryid=1
adjointSource 1
locationID=1
responselD=1
end adjointSource
mmsubcells=2
end importanceMap

end data

end
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Appendix B

Detailed Higher Order Derivations

B.1 Third Central Moment

Continuing from second order work via Eq. @, multiply by [r,, — E(ry)]

[ri = E(ri)llre = E(r)][rm — E(rm)] =

% ory, Or; Orm,

80@1 80%2 ({9041'3

5ai1 (50@2 5041'3
ol

11,82,43=1
Nq
. 1 Z or, Or  0%rm
80@1 804,-2 8011'38011'4

9 6a¢1(5ai25ai35ai4

. 0
11,12,83,14=1 @

Nao

1 Z or, Or;  0%rp,

dav;, davi, cov(ay, ay)

2 11,12,13,94=1 6ai1 504i2 aai?’aai‘l ad
1 N or 0%r;  Or
k 1 m
+§ E Do Dov Do Dov: 50&1'1(50[1'250@350(1'4
11,12,03,04=1 Qiy Oy 05 Oty o0
Na 2 2
1 ark 0 T 0 T'm 5 5 5 5 5
YT 2 Doy, Byl B | o 0 I D0i 00
11,12,13,14,i5=1 Qiy Oy Oty 00§y 05 | o0
N,
1 i or,  0%r 01 o S S ( )
—— Qi 00, 03 COV gy 5 Qg
4 11,12,13,14,i5=1 aail 80@2 80&1'3 aa¢430{¢5 af
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_ 1 %a: 8rk (927‘1 8rm

day, cov(ay.,, 0, )y
8041-1 8ai28ai3 8051'4 ! ( 2 3) :

af

11,02,13,14=1

_l ga: or,  0°m 0%ry,

day, cov(ay.,, i, )0y, 0y
80[1‘1 30&@80@3 Baiﬁais ! ( 2 3) 4 >

af

11,12,83,%4,15=1
No

+1 Z 3rk 827"l 327"m 5 ( ) ( )
—- 5, COUV\ O, , O, JCOU\ Oy 5 O
4 o e e i1 8ai1 80[@80[@) 8041'48047;5 ab ‘ 2y s s
11,12,13,%4,15=
Nq
1 or,  0*r,  Orp
-1-5 Z 9 0D P 50@150&1‘250@35&1‘4
11,02,13,94=1 Qiy Oy O Oy [0
N,
1 4 87‘1 627'k 82rm
+- Z - - ] ] ] 50&1'15041'2504135011'45041'5
4 Oaiy O, Ocviy Oy Oaviy | o0

11,12,13,i4,i5=1
Ng

1 Z 37‘1 827‘k 82’/‘m

aail 8ai2 aaig 80{1‘4 3041‘5

da, daiy dauizcov(a,, i)
0
«

11,82,13,84,15=1

1 % 67‘[ asz aTm

day, cov(ay.,, ;. )oay
8041‘1 3041'2804,'3 8Ozi4 ! ( 2 3) 4

af

11,82,83,04=1
Nq

l Z or, 0%ry 0%ry,
4 O, O, Oavjy Oavj, O,

da;, cov(ay, g )00, O,

11,i2,13,04,i5=1 ol
N,
1 i 37‘[ 827% 627’m

+— dav;, cov(ay, g )cov(a,, Q)
4 11,12,13,14,i5=1 8ai1 8ai28ai3 aai“aaif’ ol
N,
1 3 827‘k 627'1 8rm

+4_1 E DD YY) P 5ai15ai25ai35a¢45ai5

11,02,13,04,i5=1 iy Oy O3 Oy OQis |0

N,
- 0%ry, 9%r P,
+-= E (5ai15a¢26ai35ai46ai55ai6
Bail 8ai2 aai38ai4 80[1‘58041‘6 ol

11,82,83,84,15,i6=1

N,
= 0%ry, 9%r r,

[

davj, 00, Otz v, cov(uy , Qlig)
0
«

- g Z aail 80[2'2 80&2'3 80&14 80&15 80&i6

11,12,13,14,15,i6=1
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1 Z 0%ry, %r;  Orp,

davi, 0, cov(ay, o, )0,

4 i1 intadasis=1 60@1 8041-2 Gai38ai4 8041'5 ol
N,
1 i 0%ry, 9%ry Prm oS ( V60,0
—= Qi 00G, COV (O q , O Q- 00
11,12,13,14,5,i6=1 O, iy Oariy Oovi, dai; Ok af b v T
) K K K K -
Na 2 2 2
+1 E o o O rm dai davi, cov(ay, o, ) cov (g, uig)
" 7 7 7, 7 7, 7
8 L= ) Oai; Oy Oy Oavy, Oy Oavig | o0 190G 35 Qliy 55 Qig
11,12,03,14,15,16=
N,
1 i 9%ry, Pr Orm ( Ve, 8010
—— COV\ vy, Oty )O3 0L, O Qg
ininsiaiasis=1 80@1 8a,-2 8011'38011'4 &o% af
) K K K -
N,
1 Za aQTk 827‘1 827‘m ( )5 s 5 5
s covl\a, , Oy A, 000,000 00
,,,,,, 1 Oai;, Oy Oaviy Oavy, O Oavig | o0 1) Qg 30, 05 0 Qg

11,12,13,24,25,26 =
" Z 0?ry, 0% 0r,
8 1 80[1‘1 80{1‘2 80@3 8ai4 80@5 8Ozi6

cov(a, , iy )0tz d v, cov (g, i)

11,22,23,4,25,16 =

af

N,
+ 1 i 627% 827‘1 8Tm ( ) ( )5
— COV\ gy, Oy JCOUV\ g, Oty YOGy
4 i1 o iadasis=1 aail 8ai2 8ai38a¢4 8ai5 ad
N, 2 2 2
+1 Ea L o Orm cov(ay, , iy )cov (g, iy )OO
Q i1y Yig 139 Yy i5 i6
8 i1, 42,08 dards ie=1 30[1'1 80@2 8ai38ai4 8Oéi5 8ai6 ab
K K K K k) -
N,
.- Ea O r Oni O%rm cov(a, , iy ) cov(y, ai, )cov (s, , ay)
8 L= aailaai2 30[1'38041'4 8047;530[2'6 af e 3y 5 e

Note that the sums have been consolidated into one symbol even though they still represent
up to six independent sums. Next, each of the 27 terms may be multiplied by the unknown
probability distribution p(c,r), integrated over all input parameter space and all constants

factored out of the integrands. For convenience, the two following definitions will be used to

simplify notation

Ml,l,l(a’il?ah?ai?,) = / 5ai15ai26a’isp(a7r)da (B]')
De
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Nl,l,lyl(ailvaiwaim ai4) = / 5ai15ai26ai35ai4p(aa"")da (B.2)
Do

Fifth and sixth order moments will arise once the integration is carried out. Any term that is

higher than fourth order is set to zero.

E([ri = E(re)][r — E(r)llrm — E(rm)]) =

Ne ory Or; Orm
Z_hz;;:l O, Oy Oaviy
+1 % ory Orp  0%rp,
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1 % or.  0%rp  Orp,
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+0
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Nao

0%ry, ?r; Oy,

11,82,13,54,15=1
1 e
i1 ,i2$i3 ;i45i5 7i6:1
N,
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o

Collect on highest order common terms

E([rr = E(ri)]lr = E(r)][rm — E(rm)]) =
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3 Z Oay, Do, Oy Do, a0M1,1,1,1(ai1,ai2, i Qi)

11,82,13,14=1
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Nao

2.

11,82,13,14,15,i6 =1
N,

2.

11,12,13,14,15,i6=1
Ng

2.

11,12,13,14,15,i6=1

827'14: 8277 827'm

8a2~1 6Oéi2 ao% aai4 80@5 8&16

Py P P

aail 8ai2 aaiS 30{1‘4 30{1‘5 3011‘6

327”k 627”l aZTm

80[2'1 80&12 80&13 (9041'4 80@5 80%

N,
N Z“ Or, Or; Orm
i1,82,i3=1 (90[1'1 (9041'2 8041'3 af
N,
1 < or,  0%r O%ry,

>

11,82,13,84,05=1
N,

>

11,82,13,14,i5=1
Ng

>

11,82,13,84,05=1
Ng

>

11,12,13,14,i5=1
N,

>

11,82,13,14,15=

80@1 80@2 80&13 80&1'4 80@5

37’k 327‘1 aQTm

80@1 6Oéi2 aai3 8ai4 8ai5

N

or,  0*ry, 0%,
Ja, O, Oaviy Oy, Oy

arl 827“]4; 827"771
8042'1 80&12 30&13 8Oéi4 aai5

N

0%ry, %r;  Orm
1 aailaah 30[1‘38&1'4 8041'5

No

>

9%ry, %r; Orm,

>~ =

8ai18a1~2 80&1380@'4 80@5

11,82,13,84,05=1
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111,11 (i, 5 Qg g, @iy ) OV (i, Qi)
a®

11,111 (0, iy, g, Qi ) cov (g s iy )
ol

111,11 (g, Qi s g, Qi Jcov (v, iy )
ad

1,1, (g s iy, Qi)

Nl,l,l(ail y gy s Olis)CO'U(Oéiz, aiS)
a()

Ml,l,l(ail y Qg s 0[7;3)00’0(017;4, ais)
a®

M1,1,1(az‘1 s iy y Q) OV (i, i )
ol

pa,1 (g, @iy, Qi) cov (g, g
a®

H111 (0, @iy, Qi ) oV (g, vy )
ad

H1,1,1 (ai37 Ay Qg )CO’U(OAil ) ai2)
ol
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Nao

_ 1 Z aT‘k 827'1 Grm

(90éil 8Oéi2 8ai3 8a2~4

cov(ay , o, ) cov(y, iy )
Lo 0
11,12,13,14=1 o
Na

_1 Z or, Or  0%rm

8ai1 8Oéi2 8Oéi3 Bau

cov(ay, , iy )cov(ay, iy )
Lo 0
11,02,13,14=1 o

Na

1 Z (977 827"k 6rm

3%‘1 8041'28047;3 80[2'4

cov(a, , o, )cov(ay, iy )
aO

11,12,13,84=1

Ly P o o (i iy Jeov(cu, iy )oov (i, i)
i 8041'16047;2 3(12'380414 30&1580@6 aOCOU Ay 5 Oy JCOV\ gy Oy JCOU( Oy g
T TR (i i )eov (s, g, Jeov @ i)
8 11,42,13,14,15,16=1 8ailaai2 8O‘i:380[’i4 8()[1'56041'6 aocov iy iz OV Ghia €O e
+3 % Oy On O rm cov(a,, iy ) cov(auy, vy ) cov (g, Qi)
11,12,13,14,i5,56=1 8041'18061'2 3ai30ai4 8ai530£z’6 af PG G )0 e oo

1 Nq (927'k 627'1 62rm . . . . . |
8 2 Oy, Oy Oy Oy Doz Do | o cov(@uiy, @i Jeov(aiy, aiy Jcov (s, )

11,12,13,14,15,i6=1

Neglecting parameter cross-correlations that are higher than second order and are multiplied by
second order derivatives reduces all pi1 11(,, 04y, @iy)’s and pq1,1,1(04,, Qy, iy, @,)’s to sim-
ply third (unnormalized skewness) and fourth (unnormalized kurtosis) order central moments

w3, ) and pg(oy, ) except for one term; namely:

No

Z ory, Or; Orm,

80&11 80&12 8ai3 ao

Ml,l,l(aila [07P% a’is)‘ (B3)

t1,02,i3=1
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In this term, there are non-negligible cases when indices match, for example, a;; = «y,. For

w111 (0, , aiy, vy ), this gives the following possibilities:

)
p1,1,1(0,, @iy, ;) when no indices match,

11,11 (5 Qg i) — po.1 (i, ay) when any two indices match, (B.4)

pa(a,) when all three indices match.
\

Splitting the summation into two distinct pieces for us(cy,) and everything else yields

N,
Z"‘ ori Oryp Orp J11 (0, 00,) =
a.  a. o 1,1,1 i1y igy Qgg ) —
i1,i2,i3=1 60&1‘1 8041'2 8041'3 ol
N, N,
X Org, Orp Org, X Ori Orp Orp,
Do Do D, | Halaa) + > Do Do Do | Farilain, o, a6). (B.5)
=1 G O O a0 i1,ig =1 Ot iz Oz [a0
11 #1273
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9

Now, setting 7, = 7, = r,, and suppressing the “evaluated at a” notation gives

35 &1y ’ 0%ry,
_g Z (8a2 > (aai28ai3 ) /~54(Otil)cov(ai2, ai3)
e 81“k 3
M Z Oail M3(ai1)
N,
2 87”" ark 8rk
i Z (aail) (30@2) (aais) 1,1 (0 iy i)

i1,i2,i3=1

11 #12F£13

N,
3.5~ (O [Pre Oy
2 Z (3%‘1) <80‘121) (8041‘28041‘3 a0, Jeov(aiy, 0 )

91,%2,t3=1

N,
3 S ark 827% 87‘k
2 2 <5’0¢n) ((%@60@3) (8ai4 cov(ay, aig)eov(Qiy, iy

11,12,13,i4=1

3

N,
1 ~ o%r
+4_1 z : (—k> cov(aiuaiz) . (B.G)

i1,i2=1

8Oéi1 804i2
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Lastly, factor like terms to give the third order central moment

N 9 N,
1 62rk 87'k 3 82rk 321"k
5 : <60421 /’L4(a11) 3 (8@11 ) B 4_1 (8@%1 Z (8(122 6(12'3 ) CO/U(O[lzy a’Lg)

i1=1 ! | in,iz=1
Ne [ 2 2 N, 2
87‘]4; ark 3 (9 Tk 6 T
* Z (aah) ,UJ3(CY11) (aai1> B 5 (aa2 > ) Z (6041'26041'3) CO’U(Q{W, az?,)]
i1=1 i i in el
N,
- ory, ory, ory,
i ] Z (aam) <80£i2) (80@5) lelal(azuawu 0413)
i1,i2,i3=1
i17#12703
N N
3 = ory, ory, < 827»k
_5 | Z (8ai1) <8ai2) OCOU(an?a'LQ)] [ Z <m CO’U(a237 0114)
_11’12:1 o 13,04a=1
3
N,
1 - 82rk
1l Zl (aailaaiz) C"”(O‘ivo‘i2>) : (B.7)
i1,l0=
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B.2 Fourth Central Moment

Continuing from third order work multiply by [r, — E(ry)]

[ri = E(ri)][r — E(r)][rm — E(rm)]lra — E(ra)] =

z Oory Ory Orm Orn

8ai1 6‘ai2 aaig 60[»;4

60(i1 50&1'2 5O£i3 (50&»;4
P

©1,12,13,i4=1
N(X

1 aTk 87‘1 62Tm 8Tn
+§ Z 8a¢1 8041-2 8012‘36041'4 80[1;5

(50&1‘1 5ai2 5ai3 5&1‘4 5a,-5
i1,i0,ig,i4,i5=1 af

Noa

1 dr, Or,  0%*rn  Orn Sa. 8 ( )6
J— E Qi Oy COV( gy Oty JOig
2 11,12,13,%4,i5=1 aail 80[1‘2 8&1‘3 8&1‘4 80[1‘5 af
N,
= Ory  *ry Orm Orn
+— E a p) P a P 5O£i1 5a¢26ai36ai45ai5
i1,12,43,i4,i5=1 Qiy O Otiy Oty OQis | g0
N,
= ory  0*r Pry 0Ty
-+ E Pl p) Bl p) ) 9 50zil 5ai25ai3§ai45ai5 5&1‘6
11,12,13,14,15,i6=1 iy O 0Qig OQiy Otis Ois [0
N,
1 i or,  0%rm ?ry,  Orn o e s ( %
- Qi 00, 00, cOV (i, , i )0,
4 Oy Oty Ooviy Ooviy Ocvig Ovig | o+ ° ° 4 e TG

11,12,13,14,15,i6 =1

N,
1 Za 87’k 627’1 87‘m arn (5 ( )5 6
— = Qi COV( gy (g )OO, Oy
Iy Oaiy Oy Ocuiy Oaiy Octig | 0
N,
1 Za ark 327‘1 82T‘m 8rn 5 ( )5 (5 5
_ - Qi) COV Qg y Qg )OO, OQli5 O
8041'1 8ai26a¢3 6ai46a¢5 8ai6 «0

11,12,13,14,%5,t6 =1
N&

+1 E Ore 0% Orm_ Orn davi, cov(iy , iy )coV (g, tig )d0;
4 . O Ocvi. O Ocvi. O “ 125 H3 145 Qi i6
i1,i2»ia,i47i5,i6=18 i1 90y iy iy Ois Otig | oo
N,
= 37‘1 82’Pk a’r’m 87‘n
+= E 00, 0, dauis 0ou, O
2 8Oti1 80@280@'3 8011'4 6Oéi5 a0

91,12,13,14,i5=1
NOt

41 Z ory %ry, %rm  Orn
4 O, O, Daviy Oy Oy Davig

(5041‘1 6ai2 (50(1‘3 (5a~;4 5&1‘5 §ai6

i1,i2,i3,14,15,i6=1 af
N,
1 Zﬂ or,  0%ry *rym Orn o Sov s ( P
—_— Q1 05 03 COV(y , Qg JOUg
4 Oaii; Oy 0auiy Oaviy Oavis Oauig | 0

11,42,13,14,15,i6 =1
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1 % or 827‘k Orm Orn

O, cov( iy, iz )00t iy

i Oavy Oy Ocviy Oaviy Oauig | 0
_1 g‘i ory 621"k 827‘m Orn Sau ( ) ) )(5  Sovi o
iy g i Tn s de—1 80[1‘1 8ai28ai3 80(1'48017,‘5 8Oli6 o0 Qi COV( g, Qi JOG, 05 0
1 Na ory 827‘k Orm  Ory Saus ) ) ) Vo
+Z Z Oaiy Oty Oty OviyOcig Octig | 0 iy cov(@ti iy Jeou(@iy, s )00k

©1,12,13,14,15,i6=1

N,
1 < %ry, Pry Orm Ora
+= E 6 8 6 8 a 6 6ai16ai26ai36ai45ai56a16
i1insisiais.ig=1 0110z Gz Oy Oz 0 |0
N,
2 8%ry, 8% ?ry  Orn
+= Z aa 8a aa aa aa 6a 8& 5ai15ai25ai35ai45ai56ai66ai7
i1,12,43,i4,85,i6,i7=1 R 3 15 e 7 el
N,
1 Ea 0’ 9’r i Orn daviy dcvi, dctigbaui, cov(aiy, g )da
i : - - : - _ ) i1 005 03 00, i55 Qig i7
s T e i1 Oy Oy, Otz Ocviy OcuigOig Otiy | 0
N,
1 Za 827‘k 827'1 Orm Orn S 5 ( )6 Ey
_t Qq 00y OV (g, iy )00t i
i in i i g inmt 001 002 00113 0tiy Davig Dvig |0
N,
1 Ea Ory Or Frm_ Orn daui, 0y cov( iy, iy )dtig b g o
_ = i1 io i3y (ig i5 i OCkig
aail Baiz 8ai36ai4 BaisaaiG 8041‘7 a0

11,12,13,%4,15,%6,07=1
NOL

Z 827'k 82’1“[ 827‘m 87'11

S, Oaui, cov(auiy, iy )eov (s , Qig )0Q;
O, Oty Oty Oavi, OvigDaviy Doy 1Oz cov(ay, iy Jeov(aig, aig )i

af

1
8

11,92,13,14,15,%6,i7=1

N,
1 Za (92T'k 821”[ Orm Ory ( )6 5 5 5
_ COV( Uiy y Qi )O3 00, 05 O
i1,12,13,%4,15,i6=1 8(11‘1 aai2 aaisaai‘l Bai5 8ai6 af
N,
1 - 8277@ 6271 azrm 87"7;, CO’U(a a )60[ dai, O O, O
Z Oaviy Oy Ooviz iy Dovig O Oaviy | 0 v R

©1,12,13,%4,15,%6,i7=1
Nq

Z aQT'k 627“1 82Tm aTn

cov (@i, iy )00, 00, cOV (s , Qi )OCL;
O, Oty OaviyOavi,y OvigDaviy Doy (e, a3 Jbexsg bevigcov( ey, g Yooy

af

1
8

11,12,13,14,15,%6,i7=1

41 i‘i *ry, &Pri Oy O (auiy , iy ) oV (tiy , i, )Stis S
i1,12,13,14,15,i6 =1 aail 80[1’2 aaigaai4 aoﬂs aaiﬁ aOCO’U @iy, Qi JCOU Qg , Qiy JOQi5 0Qig
L1 % 8%ry, 9%y rm  Orn (o ., )eov(au 1) 805 60 et
i1,i2,i3,i4,15,i6,i7=1 Oaii, Oy OavizOaviy Oaviz Oavig Oaviy aocov i 2 JEOUIy a JORs O Oar
1 Al d*ry, ry FProm Ory o o Vo
_= Z R I I aocov(oz“,mz)cov(ozl?,,au)cov(als,alﬁ) [e 2

11,12,13,14,15,16,i7=1
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1
+§ Z
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Z ore Or
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1
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1
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1
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or, 0%r, 0% &%rn,

da;, cov( ., , o )cov(as, , Qs )0, 00
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-l-1 E Ory O O rm Orn S, 0aviy 0auis cov( iy , g )cov(aug, iy )
8 . = 1 8041'1 8()11;260(1'3 80&;'48()0;5 Oaiﬁaai7 a0 B 2 3 4 5 67 7
21,22,23,%4,15,26,07=
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No

+l Z 81"1 827‘k arm 82rn
60@-1 8ai28ai3 6a¢4 80:,—560@6

O, cov(iy, iy )0t cov (g, Qi)

11,12,13,14,%5,i6=1 af
N,
1 = or,  0%rk %rm 8%r,,
+ E davi, cov( iy, Qg )0t 8t cov (g, Qi)
< i1 igy Qig ig4 Ois igy iz
i, Oy O, Oy, Octis Oovis O
il,z‘z,is,i4,i5,z‘s,i7=1a i1 00tiz Otig 90xi, 00tis 00tigOtiz | oo
N,
1 < ar,  *ry Prom Pry,
E Oy cov( iy, iy )cov( iy, g ) COU (i, Qi)
Y ) ) - ) - ) i1 igy Qig iqy Qis iy i7
i1,12,13,14,95,16,i7=1 9, daiy Oaviy Doy dais Davig Ocvi ab

No

2 2 2
L E O Or Orm _07r 00, iy 0uiz 0, O tig cov (g, iy )
- i1 OCip Oz 0Qkiy Okig igy iz
s e —1 Oy Oty OavigOavyy i OaigOaviy | o
N,
L Ea e O O rm Orn 00y 0uiy 0tig davs, datig dcvig cov (i, , lig)
“1a 11 OQip OCi3 00, 05 O iy Qig
16 i1,i3vig 004y 6‘ai1 80@2 8ai38ai4 (9017;58&1*6 8ai78ai8 0
15,16,07,18
N,
-I-1 Ea Ori & Orm &rn davi; 0avi, daviy davs, cov(auy, g )cov(a, , lig)
T i1 19 i3 14 159 Xig 17y Qig
16 i1yinigdia aailaaiz 80&,'380(1'4 60@-580@6 8ai76ai8 P
isirir iz |
N
+1 Ea Ori Ori_ Orm _&%rn davi, Sy cov(uy, iy ) Otz cov(aug, iy )
< 11 Oig i3y Qig i5 iy Qi
8 i1,02,i5,i4008,06,i7 =1 8ai1 aai2 c’)ai38ai4 3C¥i5 8ai68ai7 a0
Na 2 2 2 2
+ L E O Or Orm Orn davy Sy cov(uy, iy )ty o cov(uy , aiig)
s i1 i2 139 iy i5 i6 17y Lig
16 01,0234 Bail 804,-2 Baiaaau 6‘ai5 8Oéi6 8ai78ai8 a0
i5rig.iriis |
N, 2 2 2 2
L Ea Orw Or 9rm Orn daviy dcviy cov(iy, iy )cov(Qus , lig )cov (i, , Qi)
16~ < 804121 aaiz 8O£i380ti4 8041'5 8Oéi6 6a,-78ai8 0 L 2 3774 57 <6 75 Qig
11,22,3,%4 _
i5i6yir s "
N
+1 Ea Ori Or_ Orm _&%rn cov(@uy , iy )00ty 00ti, Otz cov (g, Qi)
Q i1y Qg 130Xy Ois iy Qi
8 i1,82,13,14,15,16,i7=1 dai, Oaiy OcvigOcviy Dvis itz | 40
Na 2 2 2 2
+ L E O Or Orm Orn cov(auy , iy )05 0t;, Jtiy S0ti cov(uiy , i)
16 i i 8051‘1 8C¥i2 8&1360@4 80@5 60&1‘6 8ai78a18 a0 v 2 3 4 5 6 m 8
1,22,23,%4 _
i5.ig.iriis |
Na 2 2 2 2
L E Ork Or Orm Orn cov(aiy , iy )0t 0t cov (g, Qg ) oV (s, Qlig )
16 8Oéi1 6a¢2 80%60% (9(!1'5 6ai6 6ai78ai8 P B 2 3 4 52 6 w 8

11,12,93,84 _q
i5,16,17,18
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No

1 Z %y, %y Orm 0%y

cov(a, , iy )eov( s, iy, )00 cov(Qug,
aailaah 80[1;360&;4 8041'5 aaiﬁaai7 ( 11 Z2) ( 39 14) 5 ( 6 7«7)

af

11,12,13,14,15,16,i7=1
N,

L 3 i O O rm O cov(y , iy )cov (g, iy )05 8t cov (g, Qi)

16 Bail 6a,-2 8ai38ai4 8ai58ai6 6ai78ais B 2 37 4 5 6 m 8

af

11,12,93,84 _q
15,16,17,18
N,
n 1 i 3%ry, 9%, %rm %r
16 . (9Oéi1 6ai2 8ai38ai4 aaisaam 8ai78ai8
11,12,43,84 _1
15,16,07,18

cov(auy, iy o0 (ay vty )00 (@, i Yoo (s i)
aO

Next, each of the 81 terms may be multiplied by the unknown probability distribution
p(a, r), integrated over all input parameter space and all constants factored out of the inte-
grands. Fifth, sixth, seventh and eighth order moments will arise once the integration is carried

out. Any term that is higher than fourth order is set to zero.

E([re = E(ri)l[ri = E(r)][rm — E(rm)][rn — E(ra)l] =

Z a’l‘k 81”1 a’r‘m 37‘n

80{1;1 60(—;2 80&1'3 8ai4

u1,1,1,1(0éi1701i27011‘370%)
i1,i0,i3,i4=1 af
+0
N
1 Za Or, Ory  O%*rm  Orn

80&1‘1 8ai2 6ai36ai4 5‘ai5

p,1,1 (g s Gy, Qi ) cov(Quig s iy )
o(0

©1,12,13,%4,i5=1

+0
+0
N,
1 i 8rk 827‘1 827“m aTn ( ) ( )
- P1,1,1,1 (i, Qg , Qg A JCOU(Qliy , O
60&1'1 80&i28a¢3 804,-48ai5 6a,-6 a0 b 27 37 6 4 5

91,92,13,14,15,16 =1

No

1 Z ork 8%r,  Orm Orn ( Jeou( )
-5 H1,1,1 (i Qg s Qs JCOV Qg 5 Qg
2 g T a1 Oaiy OaiyOaiiy Oaviy Ocvig | L0
N,
1 Z’f org 827“; asz Orn ( ) ( )
- 101,1,1,1 (g 5 Qiyy Qg y Qi )COV( Qg 5 O
3051‘1 8ai28ai3 6Oz¢4(9ai5 80% a0 Ly e TG 2

11,12,13,14,15,i6=1
NOC

Z 6Tk 62 Tl 82 Tm 8Tn

8Oéi1 6a¢28ai3 8064;48041'5 80&16

cov(ay ; g )cov(Qiy , iy )coV(iy, i )
a0

!
4

11,42,13,14,15,i6 =1
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+0

+0
1 % ory ry, ?rm  Orn

6ail 8ai26ai3 8ai48ai5 8a,-6

Hl,l,l,l(ail y Qigy Qg aie)cov(aiu ais)
a0

11,92,13,14,15,i6 =1

No

1 Z ory 9?2 re  Orm Orp

60[-;1 Baiz 8()% Bam (9011;5

p1,1,1 (0, Gy, g )eov (g, iy )

i1 ,i,i3,04,i5=1 of
N,
1 i 6rl 827‘k asz 31"»,1 ( ) ( )
-7 H1,1,1,1( Qg Qg y Qi Qi JCOV Qg y Qg
4 i1 g Tnis de—1 0oy O, Oaviy Oavyy Ooviy Oovig 0
N,
n 1 Z“ or; 8%y, Prm  Orn ( Jeou eon( )
— COV(Qjy , Qg JCOV Qg y Qg JCOV iy y g
i1,42,13,14,15,i6=1 90, daiy Ocusy Oaviy davis Darig af
+0
+0
—0
N,
1 Z‘” &ry, %ry Orm Orn ( Jeou( )
- H1,1,1,1 (Qiq 5 Qg y Qg y Qg JCOV( Qg , Qliy
i1,12,93,14,15,i6,i7=1 Oai, Oaui, Oaiz Ocviy, Jais Davig ol
-0
Na 2 2 2
m
1 O°rk. o°ry o°r orn
+3 Z Hi,1,1 (aila Qg ai?)cov(ais y Qiy )Cov(ais ) ais)
8 aailaaiz 8&138()@‘4 aaisaaie 3Ozi7 a0

©1,92,13,14,15,%6,07=1

N

1 Za: 8%ry, ry  Orm Orn ( ) ( )

- COV\ iy , Qg J1,1,1,1(Rig s Qiy , Qisy Qig
i1,12,93,14,15,i6 =1 dai, Ocviy Daviz Oaviy Dais Davig o0
-0
N,

+1 i A%ry, 9%ry *rm  Orn ( ) ( Jeou( )

< COV\ iy Qi JU1,1,1\Qigy Ay, Qiy JCOU i, Ui

8 aail 8011‘2 804138041»4 8ai58ai6 8Ozi7 «0

91,92,13,14,15,%6,07=1

N,
—|—1 Ea Fr Ori Orm Orn cov(ay , iy ) cov(ig, iy )eov (g, Qg )
1 . . . . . . i1y Qig i3y Qig 159 Qig
4 I rrw A Oaiy Oy, OcvizOovyy Ocvig Octig | 0
N,
+1 S O i Orm _ Orn cov(ay , iy )cov(ag, iy (vig, Qg @iy )
- E . s iy )1 (g s i, Qi
8 6a¢18ai2 6ai38ai4 80@560@'6 (9Oli7 a0 T2 i) i ter e T

©1,92,13,14,15,%6,07=1

-0
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+0

+0
No

4 Z 8T‘k 8n 827‘7” 621”"
6a,-1 80&1;2 6ai38ai4 8()(1;58&1'6

==

B1,1,1,1 (g Qg Qi Qi ) cov (i, iy )

= 0
91,92,13,14,15,i6 =1 «

+0
+0
-0
N,
1 i ory  0*r Orm  O%rn ( Yeou( )

- H1,1,1,1 (X 5 Qi y Qg y Qi JCOU( iy , O
4, L= 180&—51 80(1;260[1'3 80&1;4 6012-58041-6 «0 B 4 57 6 27 3

11,42,13,14,15,16 =

—0

N,
1 - ory 0% Prm r,

+3 E 111,10 (0iy s Qi i ) OV (i, iy )cOV iy, Qi)
81_ oia in e i 16ai1 8ai28ai3 6‘ai48a15 8O¢i63ai7 a0

1,92,13,14,15,16,17=
+0
+0
—0
N,
1 i or;  0%rp  Orm  O%rn ( Yeou( )

a1 11,1,1,1 (g, Qi Qg y Qg ) COV( iy 5 QU5
41_ o i dais i 16‘ai1 8&1‘286”3 Bam Baisaaie a0 v 4 57 6 22 3

1,92,13,94,15,16 =

—0

N,

n 1 Z‘f ory 9%r %1, %ry, ( Yeou( Yeou( )
- 1,1,1 (A4 y Qg Oy JCOV( Qg 5 Qlig JCOV Oy y Ot
8 . P laail 0iy Oty Oy Ocviy O0tigOtiy, ao'u ’ 1rer e 2 s e

11,12,13,14,15,%6,17=

+0

+0
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—0
-0
N,
1 = 8ry. 8%y %rm 8%y,
111,11 (g, Qg 5 Qi i ) oV (i, vy )cov (i, i)

T 2 Daudar Daw,dar, Dardar, Jade, 0

11,12,93,84 _q

i5,16,17,18
-0
-0
N,

n 1 i 3%ry, 9%, %rm %ry, ( ) ( Yeou )
- COV(Qiy , Qg JU1,1,1,1( Wiz s Oliy y Qi Qlig JCOV(is, Qlig
16 il,i2,i3,i4_1 80(7;1 6ai2 Oaisaau 8041'580(1;6 6ai78ai8 «0

i5,16,07,18
N,
+1 < *ry, Pry Orm  0%ra ( Yeou( ) ( )
Q E COV(Qiy , Qip JCOV Qg y iy JJ1,1,1 (Wi 5 Qi Qg
8 i1,02,i3,i4.08,06,i7=1 8ai1 Baiz 30[1‘38017;4 8%5 8ai68ai7 a0
N,
1 & 8%ry, 8%y ?rm %ry
+— > Do Do Do Bar. Do do Dordar | covlai, oy )cov(aiy, oy )i 1,1,1(cis, g, i, i)
1 72 13 14 15 6 rd 18 |0

11,12,93,84 _q
i5,16,47,18

o, asz 827‘1 627‘m 827‘n
cov(auy ; iy )cov (i, iy ) OV (i, i ) OV (i , i)

af

_E Z (90(1;1 60&12 8Oli3 8ai4 aaisaai6 6a¢78ai8

11,12,43,84 _q
5,16,97,18

o or, Or, Orm  O*rn

1
_5 Z 8ai1 8ai2 aai3 Bai48ai5

11,42,13,14,i5=1
N,
1 Z’f Ore Orp  8%*rm 0%ry,
4 Bail 6%2 8ai36a¢4 6‘ai58ais

11,12,%3,14,15,i6=1
N,
-~ 67‘k 81“1 azrm 827‘n

1
+4_l Z 8041;1 60@'2 80&1‘380&;4 8041'58041;6

11,42,93,14,15,i6 =1

p1,1,1(Qay 5 iy, i )cov(iy s Qi)

af

B1,1,1,1 (0 Qg Qg s iy ) OV (i, Qi)

af

cov(auy iy )ov(riy, iy Jeov @y, i)

af

1 e, ore  0*r Orm  O0%rn S o
_Z ihi%m%;isjs:l 8041‘1 8Oéi2 aai3 3Oéi4 aai5 8(11‘6 QONIJ’LI (Otn s Qg y Qg C¥14)CO’U(C¥157 Cue)
-0
+1 % or,  0°n Prm Orn 11,1,1 (g 5 Qg Qg ) oV (tiy , i ) cOV (g, i)
8 i1,12,43,14,15,i6,i7=1 60”1 8ai2aai3 6041'480(@'5 aaiﬁaa” al o o e o
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No

1
+7 >

91,12,13,14,%5,16 =1
8

©1,92,13,14,15,%6,07=1

-0

No

5

91,12,13,14,%5,t6 =1

-0

1 e,
+§ Z

©1,12,13,14,15,%6,i7=1

No

1
+7 >

91,12,13,14,%5,16 =1
8

©1,12,13,14,15,%16,i7=1

-0

-0

-0
>
16 &~
i1,i2,13,94_
15526,17,18

No

1
+§ Z

11,12,13,14,15,16,i7=1

16—
1,12,13,54_
i5,16,17,18

NC!
D
16 . &=

i1,i2,13,94_
15,526,758

8rk 327‘1 aT‘m 321“n
8041'1 80@260@3 8ai4 6064;5(9041'6

a0

or,  0%r %rm %ry,

ory %ry  Orm  O%rp

0oy O, 0viy Oaviy Ocvig Ocuig

a0

81“1 82rk 327‘m 827‘n

8a,-1 8&1‘28&13 8ai48ai5 8ai68ai7

ory %ry  Orm  0%rn

8ai1 80&@60@3 80[1‘4 8a¢58ai6

a0

ory ry, %rm 8%ry,

60&,‘1 8ai23ai3 Bai48ai5 8ai68a1—7

&ry, 8%y %rm 8%ry,

8ai1 604,-2 6‘ai3 (9Oéi4 6‘ai5 Bais 8ai78ai8

62Tk 827‘1 a’r‘m 621"”

A%ri 9%r, %7 &%r,,

80(1;1 aaiz 8O£i3 8Ot¢4 8041'5 8041'6 8a,-7

8C¥i1 8a¢2 3011‘3 8&1'4 8ai5 aais aai78ai8

%ry, &%y %rm 0%ry,

aail 60@2 Bai3 6041‘4 8ai5 (9051‘6 8ai78a18
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6Oti1 6‘ai28ai3 8ai48ai5 6a,-68ai7

af

@

af

af

cov(ay , iy )cov (g, g )cov (g, g )

p1,1,1 (i 5 iy, Qi ) oV (g, i ) cOV(ig, i)
a0

11,1,1,1 (g 5 Qi 5 Qg iy )COV (i, Qi)

p1,1,1 (g 5 iy, Qg ) OV (g s i) cOV (i, iy )
aO

CO’U(Ozil y Oy )COU(O&Q y Qig )COU(O[iS P ais)

p1,1,1 (a5 iy, Qi )cov (g, iy ) cov (i, i)
C!O

111,11 (i Qg 5 Qi iy ) OV (i, Qi ) cOV (i, Qi)

11,11 (i s Qi i JCOV iy, iy )cOV(tig 5 i)

0

#1,1,1,1 (Qiy s Qg s Qi Qi ) OV (g, iy ) COV( iz, lig)

cov(a; , iy )cov( iy, iy )cov(auiy , g )cov(Quiy , Qg )
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No

+1 O Fr_ Orm Ora cov(aiy, i ) 1,11 (Qig, iy, g Jcov (g, tig)

< E i1y Qig ) 1,1,1 (Qig, Qg s QG igy Qi

8 A~ Qay, Oy OO, Oy OcigOau, | o e 31 s er

11,12,13,14,15,i6,i7=1 &
N,

n 1 i ?ry, 0%y 0rm 0?ry, ( ) ( Yeou )
-— COU iy Qg JJU1,1,1,1 (Kigy Qiyy Qg y Qi )COU Ay Ot
16 4~ oy, Ocviy iz Oty Ocuss Ocvsg Ocviz Ocvig | o e R o

?17?27%37":4:1
15,%6,27,18
N
! 2 O O O rm Orn cov(iy , iy )eov (g, iy )cov (g, g )eov (e, , g )
16 L= 8O£i1 6ai2 8ai38ai4 80(1'500(@‘6 80&,‘780{1'8 0 v 2 i 4 5 © n 8
i1,i2,i3,i4_ «
15526,17,18
-0
N,
1 2 O Fri P rm Orn cov(ay , iy )cov (g, iy )cov(auy , g )cov(auy , Qg )
16 4~ oy, Ocviy iz Oty Ocuss Ocvsg Ocviz Ocvig | o B s srte o
i1,02,i3,04_
15526,17,18
N

+ ! S O O O rm Orn cov(y , iy )eov (g, iy )cov (g, g )cov (e, , g )

16 8061;1 8a,-2 8ai36ai4 8041'58061;6 60&1‘780@8 a0 . S sroe e

11,12,43,84 _q
i5,16,47,18

Collect on highest order common terms

No

Z orr Ory Orm Orn

8(12'1 8ai2 6Oti3 aai4 P

w111, (g iy s Qg i)

i1,12,13,14=1

157

www.manharaa.com




NOL
11,12,13,14,15,i6 =1
NOL
91,92,13,14,15,16 =1
NO(
41,12,13,14,15,16 =1
NOL
11,92,13,14,15,16 =1
NOL
91,12,13,14,%5,16 =1
NO(
41,12,13,14,15,16 =1
NOL
©1,12,13,14,15,i6=1
NOL
91,12,13,14,15,16 =1
NO(
11,12,13,14,15,i6 =1
NOL
©1,12,13,14,15,i6=1
NOL

>

91,12,13,14,15,16 =1

1

S

1

1

1
4

1L
1
1

S

1

1

1

No

>

11,12,13,14,15,16 =1

ory. 821"1 827"m

Orn

8a,-1 5'(11‘2604-;3 6‘ai48ai5

827‘1 827‘m

8rk

80%

Orn

6a,-1 80@280@3 8041-48012-5

9%ri %1

ory

6a,-6

ory,

aail 3ai28ai3 8ai48ai5

ory ry, %rm

aaie

orn

8%1 8(11‘2604-;3 6‘ai48ai5

%ry, *r, Orm

8@,-6

Orn

6a¢1 8ai2 8a¢3 8041'4 8041;5

8%ry, %r,  Orm

60&1'6

ory

aail 3011‘2 8a1-3 80[1‘4 aais

Ore Orr 8%rm o2

aaiﬁ

Tn

80”1 aai2 8Oéi3(9ai4 (90515

or,  0%r  Orm O?

80%

Tn

6a¢1 80:,-26041-3 8041-4 8ai5

or Pry  Orm 02

60&16

Tn

8a,-1 8011‘23051'3 8ai4 aais

Ory Orr 8%rm o2

6ai6

Tn

Oy O, Oz Oy Doy

or,  0%r;  Orm

80%

Oa;, O, Oy iy

ory Pry Orm

aail 86!1'2(90@3 8ai4
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B1,1,1,1 (g 5 Qg Qg Qi ) oV (i, Qi)
o0

P1,1,1,1 (@ s Oy, Qi Qi ) OV (g i)
aO

p1,1,1,1 (g Qg Qg Qi ) cov (i, Qi)
aO

B1,1,1,1 (g Qg Qg Qi ) cov (v, Qi)
QO

P1,1,1,1(Qy s iy, Qi Qi ) OV (i iy )
[e

cov(@iy , iy JH1,1,1,1(Cig s Qi Qi s Qi)
@0

M1,1,1,1(Oéz‘1 y Qigy Mgy Oéie)CO’U(ais s 041'4)
P

11,1,1,1 (@ iy s Qi s Qi) COV(Qliy , iy )
aO

Hl,l,lyl(ah y Qiygy Qi O‘iﬁ)co'U(O‘iz ) aia)
a0

B1,1,1,1 (g Qg Qg Qg ) oV (i, Qi)
QO

11,1,1,1 (g Qi s Qg s iy ) COV (a5, Qi)
QO

lll,l,l,l(ail y Qigy Qg 04-54)00’1)(011'5 ) O‘ie)
o0
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N,

M Y g ( Joou(caiy s )eov(ay i)
16 11,1,1,1(Qy 5 Qg Qi Qlig )COV( iy, iy JCOV( 5, O
16 2= Oai 0o, OaizOai, Oy Oaig Dotz Octig | 40 15 Qg Qi Qlig 35 Oliy 5 Qig

1,22,13,%4 _
is,iﬁ,imis_l
N,

by S gonin O O (@i, i) 11 Jeou(aiss )
16 CoOU(Qiq , Qi JJ41,1,1,1 ( Qg Qliy s Qig , Qlig JCOV Qg O,
16 io.,i3,0 8ailaai2 8ai3aai4 6041'58ai6 6a¢78a,—8 0 12 =72 3y Wiy 7 8 59 6

"171217'3’14_1 o
i5,96,17,18
N,

b S gl O T | ooy o)eon(s, i )
16 COV( iy, Qip JCOV( Uiz, Qtiy JH1,1,1,1( Qs , Qi Clig s Qi
16 &~ Oai, Dy Daviy Oy Oavig avsg Oavin Ouig | o 15 Qig 35 My , 5y Qligy Oz, Qlig

1,12,13,54 _ o
15,16,27,18
N,

JLosh On &n O on ( Jeou(as  aig)eov @iy, aig)
16 11,1,1,1( iy 5 Qg Qg , Oty ) OV (i, Qi ) COV( 3, 5 O
161‘ i2,i3,i Oaiiy Oty Oaviz Oy, Oaviz Oy Oavi, Ocvig | o 1) Qig, Qigy Qig 55 Qig 2 Qig

1,22,13,%4 _
’i5:i6;i7:’i8_1
N,

T 1 a 627"k 8277 827‘m 827‘n ( ) ( ) ( )
—_ E 11,1,1,1 (Mg 5 Qg y Qg y Qi )COV( gy Qliy )COV( i 5 U4
16 O, Oy, Oaviz vy, OcvigOatig Ovi, Ocuig | o 13 Qig, Qg Qig 3, iy 7y Qlig

i1,12,98,14 o
15,%6,17,18
N,

T L B Y PR Jeou(ais, )
16 COV iy, iy ) J41,1,1,1 (Qigy Uiy y Qig s Qi JCOV( iz 5 Qi
16— Oy Ooviy Otz Douiy Oovig Qi Doviy, Ocuig | 0 15 Qi 5y iy, Qi Qlig > Qg
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Neglecting parameter cross-correlations that are higher than second order and are multi-
plied by second order derivatives reduces all i1 1,1 (i, , iy, @iy)’s and pi11,1,1 (@, , Qg s iy, iy )’s
to simply third (unnormalized skewness) and fourth (unnormalized kurtosis) order central mo-

ments pg(a;,) and py(a;,) except for one term; namely:
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11,82,13,04=1

In this term, there are non-negligible cases when indices match, for example, o;, = a4, = a,.

For py.1.1,1(0,, @iy, iy, @, ), this gives the following possibilities:

p1,1,1,1(0,, @iy, vy, @,)  when no indices match,
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p1,1,1,1 (0 s Qg g, @ty ) — p2.2(0, , ay) when any two sets of two indices match,
w1 (0, , aiy) when any three indices match,
palc,) when all four indices match.
\
(B.9)
Splitting the summation into two distinct pieces for u4(ay,) and everything else yields
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b

Now, setting 7, = 7, = r, = r,, and suppressing the “evaluated at a®” notation gives
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Lastly, factor like terms to give the fourth order central moment

pa(ry) = E([ry, — E(r)]*) =
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